
The m17n Library
–A General Purpose Multilingual Library

for Unix/Linux Applications–

Nishikimi Mikiko and Handa Kenichi and Takahashi Naoto and Tomura Satoru
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba

{nisikimi, handa, ntakahas, tomura}@m17n.org

Abstract

We have designed and implemented a
software library to multilingualize ap-
plication programs on Unix/Linux sys-
tems. This library, named the m17n li-
brary provides functions necessary to
handle multilingual text. Since most
of these functions are implemented
by modifying or expanding widespread
C library and X library, it is easy
and straightforward for developers to
multilingualize existing software us-
ing this library. The m17n library
reduces the cost of internationaliza-
tion/multilingualization in software de-
velopment, and users of every lan-
guage, common or rare, can benefit
from the same computer interface in
their own languages.

The basic part of the m17n library was
released under GNU Lesser General
Public License (LGPL) on March 1st,
2004.

1 Introduction

When working with computers, we use written
languages as a significant means for conveying
information. However, not all languages in the
world are equally well supported. Some lan-
guages, such as English, enjoy various convenient
tools at low cost, while some other languages, es-
pecially Asian ones, still have difficulties even in
displaying simple text. This situation is a kind

of digital divide and should be improved with
multilingualization, which means making soft-
ware handle multiple cultural conventions includ-
ing characters, scripts, languages, and orthogra-
phies.

When developers create application programs
for English speaking users, they can use various
libraries to display, input, and handle the lan-
guage. To write internationalized or multilin-
gualized application programs, on the other hand,
such libraries are rarely at hand. Which means
each developer has to write his/her own version
of language handling codes. This is a great waste
of time and effort because most application pro-
grams require the same functionalities for inter-
nationalization/multilingualization.

In order to improve the situation, we have
designed and implemented a software library
to multilingualize application programs on
Unix/Linux systems. Our library, named the
m17n library 1 provides functions that are neces-
sary to handle multilingual characters and scripts.
At the time of this writing, the m17n library
can display more than 20 scripts correctly and
provides 12 input methods for Asian languages.
Figure 1 shows a sample output rendered by the
m17n library.

Section 2 outlines the m17n library and in Sec-
tion 3 we show how multilingual characters are
represented in our system. In Sections 4 and 5,
input methods and display routines of the m17n
library are explained.

1The word “multilingualization” is sometimes abbrevi-
ated to “m17n”, that is, ‘m’ followed by 17 letters followed
by ‘n’.

Figure 1: Sample of rendering by the m17n library

 m17n

C Library
C Library

X Library

X Toolkit

(Gtk+,Qt,Xaw..)

Applications

 m17n

X Library

Unix/Linux

 m17n

X Toolkit

 m
1
7
n

D
a

ta
b

a
s
e

Figure 2: The structure of the m17n library

2 The m17n Library

2.1 parallelism

The m17n library consists of three layers: m17n
C library, m17n X library, and m17n X Toolkit.
Each layer corresponds to a legacy library (See
Figure 2). These layers are language independent;
information specific to each language is stored in
the m17n database and loaded to the m17n library
on demand.

The m17n library is designed to be parallel to
legacy libraries; functions provided by the m17n
library are multilingual version of corresponding
functions provided by legacy libraries. This par-
allelism has the following merits.

• Developers who are familiar with legacy li-
braries can easily learn the usage of the
m17n library to write new multilingual pro-
grams.

• Currently existing monolingual programs
can be easily multilingualized.

Considering the richness of existing applica-
tion programs, the latter point is very impor-
tant. For example, suppose an application pro-
gram draws an English phrase in a window us-
ing a legacy monolingual function. Changing the
data string from English to another language may
not be enough to display a foreign phrase because
some languages require complicated rendering
(changing glyph forms, reordering character or-
ders, etc.) to be displayed correctly. If, however,
the drawing function is replaced with the corre-
sponding m17n function, language specific ren-
dering is performed automatically. Which means,

developers can develop a multilingual program as
easily as developing a monolingual program.

2.2 Language dependent information vs.
language independent functions

In designing the m17n library, we clearly sepa-
rated language/script dependent information and
language/script independent functions; the latter
is assigned to the three layers described above and
the former is stored in the m17n database.

The m17n database keeps information about,
for example, which font should be used to display
a certain script, how a certain font is encoded,
what kind of input systems are supported for a
certain language, and so on. The m17n library dy-
namically loads necessary information from the
m17n database to handle multilingual text.

Because of this separation, it is fairly easy to
add supports for new languages and scripts to the
m17n library. Preparing the information neces-
sary to handle new language/script in the format
of the m17n database is much easier than writ-
ing programs for that purpose. Therefore users
who can extend the m17n database are not re-
stricted to application programmers or multilin-
gualization specialists.

Currently, the m17n database provides the in-
formation listed below. However, this list should
be considered as an example for handling limited
tasks in limited languages. We keep adding new
data and, if necessary, the users of the m17n li-
brary can extend the m17n database themselves
as described above.

• Various character properties defined in the
Unicode standard: general category, com-
bining class, BIDI category, case-folding
mapping, complicated case-folding map-
ping, character name, script name.

• 29 input methods for various languages and
scripts including Bengali, Chinese, Devana-
gari, Gujarati, Gurmukhi, Japanese, Kan-
nada, Korean Malayalam, Oriya, Persian,
Tamil, Telugu, Thai, Tibetan.

• 16 Font Layout Tables for 9 scripts (Arabic,
Devanagari, Hebrew, Khmer, Lao, Malay-
alam, Thai, Tibetan, Tamil). Font Layout
Tables keep font specific data required for

complex text layout. See Section 5 for the
details.

• 3 fontsets: TrueType, X font, and the de-
fault. Fontsets provide rules to select a font
for each character in the string based on
the script, language, or charset property of
the character. The TrueType fontset consists
of freely available TrueType fonts. The X
fontset provides fonts that are accessible via
the X protocol. The default fontset allows
the access to the both.

• Miscellaneous data including encodings of
fonts, sizes of fonts, list of charset defini-
tions, and coding system definitions.

3 M-text: New Way to Represent
Characters

Legacy C string consists only of character codes.
Character codes, however, do not contain all the
information required for processing text. A char-
acter code does not specify its usage; in what lan-
guage the character is used, how and with what
font or glyph the character should be displayed,
etc. In order to represent and convey such infor-
mation in addition to character codes, application
programs often define ad hoc data structures and
use function parameters.

In the m17n library, objects called M-texts rep-
resent multilingual text. An M-text can handle
mixture of characters of various scripts, including
all the Unicode characters. This is an indispens-
able facility when handling multilingual text. M-
text is designed to substitute for string in C, and
we keep the parallelism described in Section 2 be-
tween M-texts and C strings, that is, the m17n li-
brary provides many functions to manipulate M-
texts just in the same way to manipulate C strings.

An M-text has not only a character string but
also arbitrary number of attributes called text
properties. A text property is attached to a part
of an M-text and used to represent various infor-
mation such as language, script, etc. on that part.

A text property consists of a key and values.
Key specifies what kind of information is stored
as the text property. Many text properties that are
indispensable for multilingual processing are pre-
defined as a part of the m17n library. Also, ap-
plication programmers can create their own text

properties in their applications. Predefined prop-
erties include face, which controls appearance of
M-text, and language, which specifies the lan-
guage in which M-text is written.

Figure 3 shows how text properties work with
a character string. In this example, a text property
whose key is ‘face’ is used. This text property
controls the appearance of the character string to
which it is attached. A text property can have
multiple values, and in this example its values are
bold, italic, small, and large. Using those values,
the m17n library displays the character string in
the specified complex appearance.

As an M-text provides a universal framework,
different application programs or routines can
share the same information coded as text proper-
ties. Moreover, as rich information can be stored
in M-texts, functions in application programs can
be simple and straightforward.

Text properties can be used both to give in-
formation to and to receive information from
functions/routines. For example, a text genera-
tion function passes a text property to a display
function to impose constraints on displaying the
string, and the display function returns another
text property to notify its caller how well the con-
straints were satisfied. The m17n library can seri-
alize M-text in an XML format so that other appli-
cation programs can reuse the generated M-texts.

4 Input Method

An input method is a facility for inputing charac-
ters that do not have corresponding keys on the
keyboard. When required, the m17n library dy-
namically loads the necessary input method from
the m17n database. An input method converts
each key sequence typed by the user into a char-
acter or a character sequence.

There are several types of input methods.

Keyboard mapping Each key on the keyboard
produces a character different from the key-
top.

Key sequence A key sequence produces a char-
acter. For example, an input method for
an European language would generates á (a-
acute) when a and ’ (apostrophe) are typed
in this order.

Figure 3: How text properties work

Keyboard mapping + key sequence
Combination of the above two.

Transliteration The script to be input has a map-
ping to Latin script. Users input Latin letters
and they are converted into the characters of
the target script. Examples include Roma-ji
for Japanese and Itrans for Indic scripts.

Any of the above + conversion server Usually
used for Han characters. For example, users
first input kana using transliteration and then
converts the kana into kanji (Han) using a
conversion server.

In the framework of the m17n library, all the in-
put methods other than conversion servers are de-
scribed in the m17n database in the form of rules
that define state transitions. Rules of a conver-
sion server define how data should be transfered
between the m17n library and a loadable module
that communicates with the conversion server.

Here is an example of keyboard mapping for
Russian. Its rules are written as follows. (Only an
excerpt is shown.)

A “state” block defines which rule groups are
used in each state and to which state the input sys-
tem transits. In the example above, there is only
one state (“init”) where the “keyboard” rule group
is used.

A “map” block defines rule groups. Again,
there is only one rule group (“keyboard”) in the
example above. In this rule group, each rule as-
sociates a keytop and a Cyrillic character. When
a key is pressed, the m17n library finds the cor-
responding rule and inputs the associated Cyrillic
character.

In the case of Devanagari input using translit-
eration, the input system is a little bit more com-
plex, because the same key (e.g. ‘a’) should
be handled differently depending on the context.
Here is an excerpt of the rules.

In this case, there are two states, namely “init”
and “second”. Each state has rule groups to con-
vert input sequences into characters. Let us see
how the input sequence kkaa is handled. The
first k is processed in the “init” state where two
rule groups (“consonant” and “independent”) are
used. As k appears in a rule in the “consonant”
group, the m17n library produces a Devanagari

consonant K (U+0915) and a Halant (U+094D),
then goes to the “second” state before processing
the rest of the input sequence.

In the “second” state, the “consonant” rule
group and the “dependent” rule group are used.
The second k in the input sequence produces,
like before, a consonant K (U+0915) and a Ha-
lant (U+094D). So far, the generated character
sequence is U+0915 U+094D U+0915 U+094D.
This time no transition occurs and the next inputs
aa are processed in this “second” state. Accord-
ing to the second rule in the “dependent” group,
aa first deletes the last character U+094D (Ha-
lant) and produces a new character, Devanagari
vowel AA (U+093E). Now the generated charac-
ter sequence becomes U+0915 U+094D U+0915
U+093E.

5 Display Engine

Displaying, or rendering multilingual text is one
of the most important facilities of the m17n li-
brary. Many Asian scripts such as Thai and
Devanagari require very complex processing for
rendering. In such scripts, a sequence of char-
acters may have to be drawn as a single liga-
ture glyph, or glyphs may have to be drawn at
2-dimensionally shifted positions. Furthermore,
glyphs may require reordering. Technology for
such rendering is known by the name “Complex
Text Layout” (CTL for short).

CTL typically includes the following five steps:
1. clustering, 2. reordering, 3. character to glyph
mapping, 4. glyph substitution, and 5. glyph po-
sitioning. In each step of CTL, the knowledge
specific to each script is required. The problem
is where such knowledge should be kept.

To date, CTL has been implemented in various
fashions. All of them put the necessary knowl-
edge in the renderer, in the fonts, or both of
them. However, neither renderer nor font is a suit-
able place to keep such knowledge. Embedding
knowledge in the renderer leads to inflexibility,
and embedding in fonts leads to duplication of the
same knowledge.

5.1 Font Layout Table

In the m17n library, CTL related knowledge is
stored in Font Layout Tables. A Font Layout
Table (FLT for short) is a resource that provides

application application

m17n-lib
Renderer

FLT
font

OTF
FLT

FLT

m17n-db

knowlege

knowlege

knowlege
knowlege

OTF

knowlege

Figure 4: Font Layout Table and CTL knowledge

knowledge necessary for rendering. FLTs bridges
fonts and the m17n renderer. A single FLT can be
used to drive multiple fonts, and multiple FLTs
can drive the same font for multiple ways of writ-
ing text (e.g. ancient style ligatures vs. modern
style ligatures). Figure 4 illustrates the rendering
system in the m17n library using FLT.

Like input methods, FLTs are stored in the
m17n database and loaded into the m17n library
on demand. An FLT consists of set of rules. Each
rule specifies a conversion from a character/glyph
sequence into another glyph sequence. The con-
version process can be cascaded, i.e. the input
character sequence can take intermediate states
before converted into the final glyph sequence.

In each stage of conversion, a sequence of char-
acters or glyphs is converted into another glyph
sequence using rules specific to the stage. The re-
sulting new sequence is passed further to the next
stage. Figure 5 shows a sample rendering per-
formed by an FLT. This FLT has two stages in or-
der to display the word “HINDI” properly in the
Devanagari script. In the first stage, the order of
the input character sequence is changed from log-
ical order (the order in the computer memory) into
visual order (the order on the display or paper).
Then in the second stage, the glyphs are substi-
tuted depending on the adjacent glyphs, and their
display positions are adjusted.

As described in Section 2, data in the m17n
database can be added by users. FLT is no excep-
tion. By splitting complex conversion into mul-
tiple stages, users can perform CTL themselves
with ease even for the scripts that are currently
unsupported.

H I N D II

characer sequence

reordered sequence

final rendering

cluster cluster

Figure 5: Rendering by multiple stages: “HINDI”

6 Discussion

6.1 Related works

Besides the m17n library, there are several sys-
tems for handling multilingual text on Unix/Linux
systems. For example, the Pango project 2 has
been developing software to layout and render
multilingual text. IIIMF (Internet/Intranet Input
Method Framework) 3 provides a framework for
developing input methods for various languages.
GNU libiconv 4 is a library to convert character
encodings from one to another. Unlike the m17n
library, however, these are single-purpose soft-
ware and each concerns only one aspect of mul-
tilingual text processing: display, input, or code
conversion.

The ICU (International Components for Uni-
code) libraries 5 support, like the m17n library,
various aspects of multilingual text processing.
While the main purpose of the m17n library is to
help developing multilingual user interface, ICU
is more suitable to process multilingual text accu-
mulated in the computer. For example, ICU does
not provide interactive keyboard input, but sup-
ports non-interactive transliteration between two
different scripts. On the other hand, the m17n
library provides interactive keyboard input, but
does not support non-interactive transliteration.

2http://www.pango.org/
3http://www.openi18n.org/subgroups/im/IIIMF/index.html
4http://www.gnu.org/software/libiconv/
5http://oss.software.ibm.com/icu/

6.2 Contribution to NLP

The m17n library is useful for NLP researchers
as well as for software developers. For example,
the flexibility of M-texts must be convenient to
represent annotated text. By representing annota-
tions as text properties, it is possible to attach both
nested and overlapping annotations anywhere to
the text without embedding tags in the original
text string.

7 Conclusion

In these days of global communication with com-
puters, multilingualization or localization of ap-
plication software is indispensable. However,
there are many languages that are difficult to sup-
port in application programs. We have designed
and implemented the m17n library so that all lan-
guages are equally well supported and all users,
regardless of their language, can benefit from in-
formation technology.

So far, we have implemented m17n C library,
m17n X library, and the m17n database. We re-
leased them under GNU General Public License
on March 1st, 2004.

We will develop the third layer of the m17n li-
brary, namely m17n X Toolkits. The first target
of multilingualization is Gtk+, but other toolkits
are also in the scope. Moreover, we are planning
to create language bindings (wrapper software) to
use the m17n library in other programming lan-
guages such as Perl and Ruby.

We also act as a member of the Open Interna-
tionalization Initiative, one of the working groups
in the Free Standards Group, to promote the m17n
library as a global standard.

Acknowledgements

Writing the document of the m17n library is par-
tially funded by Information-technology Promo-
tion Agency (IPA), Japan.

Appendix

The m17n library can be obtained from
http://www.m17n.org/m17n-lib under GNU
Lesser General Public License (LGPL).

