
Mathematical Markup Language (MathML)
Version 3.0 2nd Edition

W3C Recommendation 10 April 2014

This version:
http://www.w3.org/TR/2014/REC-MathML3-20140410/

Latest MathML 3 version:
http://www.w3.org/TR/MathML3/

Latest MathML Recommendation:
http://www.w3.org/TR/MathML/

Previous versions:
http://www.w3.org/TR/2014/PER-MathML3-20140211/
http://www.w3.org/TR/2010/REC-MathML3-20101021/

Editors' version:
http://www.w3.org/Math/draft-spec/

Editors:
David Carlisle, NAG
Patrick Ion, Mathematical Reviews, American Mathematical Society
Robert Miner (deceased), Design Science, Inc.

Principal Authors:
Ron Ausbrooks, Stephen Buswell, David Carlisle, Giorgi Chavchanidze, Stéphane Dalmas,
Stan Devitt, Angel Diaz, Sam Dooley, Roger Hunter, Patrick Ion, Michael Kohlhase, Azzeddine
Lazrek, Paul Libbrecht, Bruce Miller, Robert Miner (deceased), Chris Rowley, Murray Sargent,
Bruce Smith, Neil Soiffer, Robert Sutor, Stephen Watt

Please refer to the errata for this document, which may include some normative corrections.

In addition to the HTML version, this document is also available in these non-normative formats: diff marked
HTML version, XHTML+MathML version, single page HTML5+MathML version, and PDF version.

See also translations.

Copyright © 1998-2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules
apply.

1

http://www.w3.org/
http://www.w3.org/TR/2014/REC-MathML3-20140410/
http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/MathML/
http://www.w3.org/TR/2014/PER-MathML3-20140211/
http://www.w3.org/TR/2010/REC-MathML3-20101021/
http://www.w3.org/Math/draft-spec/
http://www.w3.org/Math/Documents/mathml3-errata.html
http://www.w3.org/2005/11/Translations/Query?titleMatch=MathML3
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://ev.buaa.edu.cn/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is a markup language for
describing mathematical notation and capturing both its structure and content. The goal of MathML is to enable
mathematics to be served, received, and processed on the World Wide Web, just as HTML has enabled this
functionality for text.

This specification of the markup language MathML is intended primarily for a readership consisting of those
who will be developing or implementing renderers or editors using it, or software that will communicate using
MathML as a protocol for input or output. It is not a User's Guide but rather a reference document.

MathML can be used to encode both mathematical notation and mathematical content. About thirty-eight of
the MathML tags describe abstract notational structures, while another about one hundred and seventy provide
a way of unambiguously specifying the intended meaning of an expression. Additional chapters discuss how
the MathML content and presentation elements interact, and how MathML renderers might be implemented
and should interact with browsers. Finally, this document addresses the issue of special characters used for
mathematics, their handling in MathML, their presence in Unicode, and their relation to fonts.

While MathML is human-readable, authors typically will use equation editors, conversion programs, and other
specialized software tools to generate MathML. Several versions of such MathML tools exist, both freely availa-
ble software and commercial products, and more are under development.

MathML was originally specified as an XML application and most of the examples in this specification assume
that syntax. Other syntaxes are possible most notably [HTML5] specifies the syntax for MathML in HTML.
Unless explictly noted, the examples in this specification are also valid HTML syntax.

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current W3C publications and the latest revision of this technical report can be found in
the W3C technical reports index at http://www.w3.org/TR/.

This document was produced by the W3C Math Working Group as a Recommendation and is part of the W3C
Math Activity. The goals of the W3C Math Working Group are discussed in the W3C Math WG Charter (revised
July 2006). The authors of this document are the W3C Math Working Group members. A list of participants in
the W3C Math Working Group is available.

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and
interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may
be used as reference material or cited from another document. W3C's role in making the Recommendation is to
draw attention to the specification and to promote its widespread deployment. This enhances the functionality
and interoperability of the Web.

All reported errata to the first edition have been addressed in this addition, and a full change log appears in
Appendix F Changes. The diff-marked version linked in the frontmatter highlights all changes between the first
and second editions. In addition to incorporating errata, the main change in this addition is to recognise that
MathML parsing is also specified in [HTML5] and where necessary to note where HTML and XML usage differ.

The Working Group maintains a comprehensive Test Suite. This is publicly available and developers are encour-
aged to submit their results for display. The Test Results are public. They show at least two interoperable
implementations for each essential test. Further details may be found in the Implementation Report.

2

http://www.w3.org/TR/
http://www.w3.org/Math/
http://www.w3.org/Consortium/Process/tr#RecsW3C
http://www.w3.org/Math/Activity
http://www.w3.org/Math/Documents/Charter2006.html
http://www.w3.org/Math/testsuite/
http://www.w3.org/Math/testsuite/results/tests.html
http://www.w3.org/Math/Documents/mml3-implementation-report.html

The MathML 2.0 (Second Edition) specification has been a W3C Recommendation since 2001. After its recom-
mendation, a W3C Math Interest Group collected reports of experience with the deployment of MathML and
identified issues with MathML that might be ameliorated. The rechartering of a Math Working Group did not
signal any change in the overall design of MathML. The major additions in MathML 3 are support for bidirec-
tional layout, better linebreaking and explicit positioning, elementary math notations, and a new strict content
MathML vocabulary with well-defined semantics. The MathML 3 Specification has also been restructured.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C main-
tains a public list of any patent disclosures made in connection with the deliverables of the group; that page
also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the
individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the
W3C Patent Policy.

Public discussion of MathML and issues of support through the W3C for mathematics on the Web takes place
on the public mailing list of the Math Working Group (list archives). To subscribe send an email to www-math-
request@w3.org with the word subscribe in the subject line.

The basic chapter structure of this document is based on the earlier MathML 2.0 Recommendation [MathML2].
That MathML 2.0 itself was a revision of the earlier W3C Recommendation MathML 1.01 [MathML1];
MathML 3.0 is a revision of the W3C Recommendation MathML 2.0. It differs from it in that all previous
chapters have been updated, some new elements and attributes added and some deprecated. Much has been
moved to separate documents containing explanatory material, material on characters and entities and on the
MathML DOM. The discussion of character entities has led to the document XML Entity Definitions for Charac-
ters [Entities], which is now a W3C Recommendation. The concern with use of CSS with MathML has led to
the document A MathML for CSS Profile [MathMLforCSS], which was a W3C Recommendation accompanying
MathML 3.0.

The biggest differences from MathML 2.0 (Second Edition) are in Chapters 4 and 5, although there have been
smaller improvements throughout the specification. A more detailed description of changes from the previous
Recommendation follows.

• Much of the non-normative explication that formerly was found in Chapters 1 and 2, and many examples •
from elsewhere in the previous MathML specifications, were removed from the MathML3 specification
and planned to be incorporated into a MathML Primer to be prepared as a separate document. It is
expected this will help the use of this formal MathML3 specification as a reference document in imple-
mentations, and offer the new user better help in understanding MathML's deployment. The remaining
content of Chapters 1 and 2 has been edited to reflect the changes elsewhere in the document, and in the
rapidly evolving Web environment. Some of the text in them went back to early days of the Web and
XML, and its explanations are now commonplace.

• Chapter 3, on presentation-oriented markup, adds new material on linebreaking, and on markup for ele-•
mentary math notations used in many countries (mstack, mlongdiv and other associated elements). Other
changes include revisions to the mglyph, mpadded and maction elements and significant unification and
cleanup of attribute values. Earlier work, as recorded in the W3C Note Arabic mathematical notation, has
allowed clarification of the relationship with bidirectional text and examples with RTL text have been
added.

• Chapter 4, on content-oriented markup, contains major changes and additions. The meaning of the actual •
content remains as before in principle, but a lot of work has been done on expressing it better. A few new
elements have been added.

• Chapter 5 has been refined as its purpose has been further clarified to deal with the mixing of markup •
languages. This chapter deals, in particular, with interrelations of parts of the MathML specification,
especially with presentation and content markup.

Status of this Document

3

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/35549/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://lists.w3.org/Archives/Public/www-math/
http://www.w3.org/TR/2006/NOTE-arabic-math-20060131/

• Chapter 6 is a new addition which deals with the issues of interaction of MathML with a host environment. •
This chapter deals with interrelations of the MathML specification with XML and HTML, but in the
context of deployment on the Web. In particular there is a discussion of the interaction of CSS with
MathML.

• Chapter 7 replaces the previous Chapter 6, and has been rewritten and reorganized to reflect the new •
situation in regard to Unicode, and the changed W3C context with regard to named character entities.
The new W3C specification XML Entity Definitions for Characters, which incorporates those used for
mathematics has become a a W3C Recommendation, [Entities].

• The Appendices, of which there are eight shown, have been reworked. Appendix A now contains the new •
RelaxNG schema for MathML3 as well as discussion of MathML3 DTD issues. Appendix B addresses
media types associated with MathML and implicitly constitutes a request for the registration of three new
ones, as is now standard for work from the W3C. Appendix C contains a new simplified and reconsidered
Operator Dictionary. Appendices D, E, F, G and H contain similar non-normative material to that in the
previous specification, now appropriately updated.

• A fuller discussion of the document's evolution can be found in Appendix F Changes.•

4

Table of Contents

1 Introduction . 10
 1.1 Mathematics and its Notation . 10
 1.2 Origins and Goals . 11
 1.2.1 Design Goals of MathML . 11
 1.3 Overview . 12
 1.4 A First Example . 12
2 MathML Fundamentals . 15
 2.1 MathML Syntax and Grammar . 15
 2.1.1 General Considerations . 15
 2.1.2 MathML and Namespaces . 15
 2.1.3 Children versus Arguments . 16
 2.1.4 MathML and Rendering . 16
 2.1.5 MathML Attribute Values . 16
 2.1.6 Attributes Shared by all MathML Elements . 21
 2.1.7 Collapsing Whitespace in Input . 22
 2.2 The Top-Level <math> Element . 23
 2.2.1 Attributes . 23
 2.2.2 Deprecated Attributes . 25
 2.3 Conformance . 25
 2.3.1 MathML Conformance . 25
 2.3.2 Handling of Errors . 27
 2.3.3 Attributes for unspecified data . 28
3 Presentation Markup . 29
 3.1 Introduction . 29
 3.1.1 What Presentation Elements Represent . 29
 3.1.2 Terminology Used In This Chapter . 30
 3.1.3 Required Arguments . 31
 3.1.4 Elements with Special Behaviors . 32
 3.1.5 Directionality . 33
 3.1.6 Displaystyle and Scriptlevel . 34
 3.1.7 Linebreaking of Expressions . 35
 3.1.8 Warning about fine-tuning of presentation . 36
 3.1.9 Summary of Presentation Elements . 37
 3.1.10 Mathematics style attributes common to presentation elements . 39
 3.2 Token Elements . 39
 3.2.1 Token Element Content Characters, <mglyph/> . 40
 3.2.2 Mathematics style attributes common to token elements . 42
 3.2.3 Identifier <mi> . 45
 3.2.4 Number <mn> . 47
 3.2.5 Operator, Fence, Separator or Accent <mo> . 48
 3.2.6 Text <mtext> . 61
 3.2.7 Space <mspace/> . 63
 3.2.8 String Literal <ms> . 65
 3.3 General Layout Schemata . 65
 3.3.1 Horizontally Group Sub-Expressions <mrow> . 65
 3.3.2 Fractions <mfrac> . 68
 3.3.3 Radicals <msqrt>, <mroot> . 70
 3.3.4 Style Change <mstyle> . 70
 3.3.5 Error Message <merror> . 73

5

 3.3.6 Adjust Space Around Content <mpadded> . 74
 3.3.7 Making Sub-Expressions Invisible <mphantom> . 79
 3.3.8 Expression Inside Pair of Fences <mfenced> . 80
 3.3.9 Enclose Expression Inside Notation <menclose> . 84
 3.4 Script and Limit Schemata . 86
 3.4.1 Subscript <msub> . 87
 3.4.2 Superscript <msup> . 87
 3.4.3 Subscript-superscript Pair <msubsup> . 88
 3.4.4 Underscript <munder> . 89
 3.4.5 Overscript <mover> . 90
 3.4.6 Underscript-overscript Pair <munderover> . 92
 3.4.7 Prescripts and Tensor Indices <mmultiscripts>, <mprescripts/>, <none/> 93
 3.5 Tabular Math . 95
 3.5.1 Table or Matrix <mtable> . 95
 3.5.2 Row in Table or Matrix <mtr> . 99
 3.5.3 Labeled Row in Table or Matrix <mlabeledtr> . 99
 3.5.4 Entry in Table or Matrix <mtd> . 101
 3.5.5 Alignment Markers <maligngroup/>, <malignmark/> . 102
 3.6 Elementary Math . 111
 3.6.1 Stacks of Characters <mstack> . 112
 3.6.2 Long Division <mlongdiv> . 113
 3.6.3 Group Rows with Similiar Positions <msgroup> . 114
 3.6.4 Rows in Elementary Math <msrow> . 115
 3.6.5 Carries, Borrows, and Crossouts <mscarries> . 115
 3.6.6 A Single Carry <mscarry> . 116
 3.6.7 Horizontal Line <msline/> . 117
 3.6.8 Elementary Math Examples . 118
 3.7 Enlivening Expressions . 123
 3.7.1 Bind Action to Sub-Expression <maction> . 123
 3.8 Semantics and Presentation . 125
4 Content Markup . 126
 4.1 Introduction . 126
 4.1.1 The Intent of Content Markup . 126
 4.1.2 The Structure and Scope of Content MathML Expressions . 127
 4.1.3 Strict Content MathML . 127
 4.1.4 Content Dictionaries . 128
 4.1.5 Content MathML Concepts . 129
 4.2 Content MathML Elements Encoding Expression Structure . 130
 4.2.1 Numbers <cn> . 130
 4.2.2 Content Identifiers <ci> . 136
 4.2.3 Content Symbols <csymbol> . 139
 4.2.4 String Literals <cs> . 141
 4.2.5 Function Application <apply> . 141
 4.2.6 Bindings and Bound Variables <bind> and <bvar> . 144
 4.2.7 Structure Sharing <share> . 146
 4.2.8 Attribution via semantics . 149
 4.2.9 Error Markup <cerror> . 149
 4.2.10 Encoded Bytes <cbytes> . 150
 4.3 Content MathML for Specific Structures . 150
 4.3.1 Container Markup . 151
 4.3.2 Bindings with <apply> . 153

6

 4.3.3 Qualifiers . 154
 4.3.4 Operator Classes . 160
 4.3.5 Non-strict Attributes . 167
 4.4 Content MathML for Specific Operators and Constants . 167
 4.4.1 Functions and Inverses . 168
 4.4.2 Arithmetic, Algebra and Logic . 177
 4.4.3 Relations . 197
 4.4.4 Calculus and Vector Calculus . 201
 4.4.5 Theory of Sets . 217
 4.4.6 Sequences and Series . 227
 4.4.7 Elementary classical functions . 235
 4.4.8 Statistics . 240
 4.4.9 Linear Algebra . 245
 4.4.10 Constant and Symbol Elements . 252
 4.5 Deprecated Content Elements . 260
 4.5.1 Declare <declare> . 260
 4.5.2 Relation <reln> . 260
 4.5.3 Relation <fn> . 260
 4.6 The Strict Content MathML Transformation . 260
5 Mixing Markup Languages for Mathematical Expressions . 263
 5.1 Annotation Framework . 263
 5.1.1 Annotation elements . 263
 5.1.2 Annotation keys . 264
 5.1.3 Alternate representations . 265
 5.1.4 Content equivalents . 266
 5.1.5 Annotation references . 266
 5.2 Elements for Semantic Annotations . 267
 5.2.1 The <semantics> element . 267
 5.2.2 The <annotation> element . 268
 5.2.3 The <annotation-xml> element . 269
 5.3 Combining Presentation and Content Markup . 272
 5.3.1 Presentation Markup in Content Markup . 272
 5.3.2 Content Markup in Presentation Markup . 272
 5.4 Parallel Markup . 273
 5.4.1 Top-level Parallel Markup . 273
 5.4.2 Parallel Markup via Cross-References . 273
6 Interactions with the Host Environment . 276
 6.1 Introduction . 276
 6.2 Invoking MathML Processors . 276
 6.2.1 Recognizing MathML in XML . 276
 6.2.2 Recognizing MathML in HTML . 277
 6.2.3 Resource Types for MathML Documents . 277
 6.2.4 Names of MathML Encodings . 277
 6.3 Transferring MathML . 278
 6.3.1 Basic Transfer Flavor Names and Contents . 278
 6.3.2 Recommended Behaviors when Transferring . 279
 6.3.3 Discussion . 279
 6.3.4 Examples . 280
 6.4 Combining MathML and Other Formats . 282
 6.4.1 Mixing MathML and XHTML . 284
 6.4.2 Mixing MathML and non-XML contexts . 284
 6.4.3 Mixing MathML and HTML . 284

Table of Contents

7

 6.4.4 Linking . 285
 6.4.5 MathML and Graphical Markup . 286
 6.5 Using CSS with MathML . 287
 6.5.1 Order of processing attributes versus style sheets . 288
7 Characters, Entities and Fonts . 289
 7.1 Introduction . 289
 7.2 Unicode Character Data . 289
 7.3 Entity Declarations . 290
 7.4 Special Characters Not in Unicode . 290
 7.5 Mathematical Alphanumeric Symbols . 290
 7.6 Non-Marking Characters . 292
 7.7 Anomalous Mathematical Characters . 293
 7.7.1 Keyboard Characters . 293
 7.7.2 Pseudo-scripts . 294
 7.7.3 Combining Characters . 296

Appendices

A Parsing MathML . 297
 A.1 Use of MathML as Well-Formed XML . 297
 A.2 Using the RelaxNG Schema for MathML3 . 297
 A.2.1 Full MathML . 298
 A.2.2 Elements Common to Presentation and Content MathML . 298
 A.2.3 The Grammar for Presentation MathML . 299
 A.2.4 The Grammar for Strict Content MathML3 . 309
 A.2.5 The Grammar for Content MathML . 310
 A.2.6 MathML as a module in a RelaxNG Schema . 317
 A.3 Using the MathML DTD . 317
 A.3.1 Document Validation Issues . 317
 A.3.2 Attribute values in the MathML DTD . 317
 A.3.3 DOCTYPE declaration for MathML . 318
 A.4 Using the MathML XML Schema . 318
 A.4.1 Associating the MathML schema with MathML fragments . 318
 A.5 Parsing MathML in XHTML . 319
 A.6 Parsing MathML in HTML . 319
B Media Types Registrations . 320
 B.1 Selection of Media Types for MathML Instances . 320
 B.2 Media type for Generic MathML . 321
 B.3 Media type for Presentation MathML . 322
 B.4 Media type for Content MathML . 324
C Operator Dictionary (Non-Normative) . 326
 C.1 Indexing of the operator dictionary . 326
 C.2 Format of operator dictionary entries . 326
 C.3 Notes on lspace and rspace attributes . 327
 C.4 Operator dictionary entries . 327
D Glossary (Non-Normative) . 355
E Working Group Membership and Acknowledgments (Non-Normative) . 360
 E.1 The Math Working Group Membership . 360
 E.2 Acknowledgments . 363
F Changes (Non-Normative) . 364
 F.1 Changes between MathML 3.0 First Edition and Second Edition . 364
 F.2 Changes between MathML 2.0 Second Edition and MathML 3.0 . 367

8

G Normative References . 369
H References (Non-Normative) . 371
I Index (Non-Normative) . 373
 I.1 MathML Elements . 373
 I.2 MathML Attributes . 376

Table of Contents

9

1 Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-dimensional
symbolic notation. As J. R. Pierce writes in his book on communication theory, mathematics and its notation
should not be viewed as one and the same thing [Pierce1961]. Mathematical ideas can exist independently of
the notation that represents them. However, the relation between meaning and notation is subtle, and part of
the power of mathematics to describe and analyze derives from its ability to represent and manipulate ideas in
symbolic form. The challenge before a Mathematical Markup Language (MathML) in enabling mathematics on
the World Wide Web is to capture both notation and content (that is, its meaning) in such a way that documents
can utilize the highly evolved notation of written and printed mathematics as well as the new potential for
interconnectivity in electronic media.

Mathematical notation evolves constantly as people continue to innovate in ways of approaching and expressing
ideas. Even the common notation of arithmetic has gone through an amazing variety of styles, including many
defunct ones advocated by leading mathematical figures of their day [Cajori1928]. Modern mathematical nota-
tion is the product of centuries of refinement, and the notational conventions for high-quality typesetting are
quite complicated and subtle. For example, variables and letters which stand for numbers are usually typeset
today in a special mathematical italic font subtly distinct from the usual text italic; this seems to have been
introduced in Europe in the late sixteenth century. Spacing around symbols for operations such as +, -, × and /
is slightly different from that of text, to reflect conventions about operator precedence that have evolved over
centuries. Entire books have been devoted to the conventions of mathematical typesetting, from the alignment
of superscripts and subscripts, to rules for choosing parenthesis sizes, and on to specialized notational practices
for subfields of mathematics. The manuals describing the nuances of present-day computer typesetting and
composition systems can run to hundreds of pages.

Notational conventions in mathematics, and in printed text in general, guide the eye and make printed expres-
sions much easier to read and understand. Though we usually take them for granted, we, as modern readers,
rely on numerous conventions such as paragraphs, capital letters, font families and cases, and even the device
of decimal-like numbering of sections such as is used in this document. Such notational conventions are perhaps
even more important for electronic media, where one must contend with the difficulties of on-screen reading.
Appropriate standards coupled with computers enable a broadening of access to mathematics beyond the world
of print. The markup methods for mathematics in use just before the Web rose to prominence importantly
included TEX (also written TeX) [Knuth1986] and approaches based on SGML ([AAP-math], [Poppelier1992]
and [ISO-12083]).

It is remarkable how widespread the current conventions of mathematical notation have become. The general
two-dimensional layout, and most of the same symbols, are used in all modern mathematical communications,
whether the participants are, say, European, writing left-to-right, or Middle-Eastern, writing right-to-left. Of
course, conventions for the symbols used, particularly those naming functions and variables, may tend to favor a
local language and script. The largest variation from the most common is a form used in some Arabic-speaking
communities which lays out the entire mathematical notation from right-to-left, roughly in mirror image of the
European tradition.

However, there is more to putting mathematics on the Web than merely finding ways of displaying traditional
mathematical notation in a Web browser. The Web represents a fundamental change in the underlying metaphor
for knowledge storage, a change in which interconnection plays a central role. It has become important to
find ways of communicating mathematics which facilitate automatic processing, searching and indexing, and
reuse in other mathematical applications and contexts. With this advance in communication technology, there
is an opportunity to expand our ability to represent, encode, and ultimately to communicate our mathematical

10

insights and understanding with each other. We believe that MathML as specified below is an important step in
developing mathematics on the Web.

1.2 Origins and Goals

1.2.1 Design Goals of MathML

MathML has been designed from the beginning with the following ultimate goals in mind.

MathML should ideally:

• Encode mathematical material suitable for all educational and scientific communication.•

• Encode both mathematical notation and mathematical meaning.•

• Facilitate conversion to and from other mathematical formats, both presentational and semantic. Output •
formats should include:

◦ graphical displays◦

◦ speech synthesizers◦

◦ input for computer algebra systems◦

◦ other mathematics typesetting languages, such as TEX◦

◦ plain text displays, e.g. VT100 emulators◦

◦ international print media, including braille◦

It is recognized that conversion to and from other notational systems or media may entail loss of informa-
tion in the process.

• Allow the passing of information intended for specific renderers and applications.•

• Support efficient browsing of lengthy expressions.•

• Provide for extensibility.•

• Be well suited to templates and other common techniques for editing formulas.•

• Be legible to humans, and simple for software to generate and process.•

No matter how successfully MathML achieves its goals as a markup language, it is clear that MathML is
useful only if it is implemented well. The W3C Math Working Group has identified a short list of additional
implementation goals. These goals attempt to describe concisely the minimal functionality MathML rendering
and processing software should try to provide.

• MathML expressions in HTML (and XHTML) pages should render properly in popular Web browsers, •
in accordance with reader and author viewing preferences, and at the highest quality possible given the
capabilities of the platform.

• HTML (and XHTML) documents containing MathML expressions should print properly and at high-•
quality printer resolutions.

• MathML expressions in Web pages should be able to react to user gestures, such those as with a mouse, •
and to coordinate communication with other applications through the browser.

• Mathematical expression editors and converters should be developed to facilitate the creation of Web •
pages containing MathML expressions.

The extent to which these goals are ultimately met depends on the cooperation and support of browser vendors
and other developers. The W3C Math Working Group has continued to work with other working groups of the
W3C, and outside the W3C, to ensure that the needs of the scientific community will be met. MathML 2 and
its implementations showed considerable progress in this area over the situation that obtained at the time of the

1.2 Origins and Goals

11

MathML 1.0 Recommendation (April 1998) [MathML1]. MathML3 and the developing Web are expected to
allow much more.

1.3 Overview

MathML is a markup language for describing mathematics. It is usually expressed in XML syntax, although
HTML and other syntaxes are possible. A special aspect of MathML is that there are two main strains of markup:
Presentation markup, discussed in Chapter 3 Presentation Markup, is used to display mathematical expressions;
and Content markup, discussed in Chapter 4 Content Markup, is used to convey mathematical meaning. Content
markup is specified in particular detail. This specification makes use of an XML format called Content Diction-
aries This format has been developed by the OpenMath Society, [OpenMath2004] with the dictionaries being
used by this specification involving joint development by the OpenMath Society and the W3C Math Working
Group.

Fundamentals common to both strains of markup are covered in Chapter 2 MathML Fundamentals, while the
means for combining these strains, as well as external markup, into single MathML objects are discussed in
Chapter 5 Mixing Markup Languages for Mathematical Expressions. How MathML interacts with applications is
covered in Chapter 6 Interactions with the Host Environment. Finally, a discussion of special symbols, and issues
regarding characters, entities and fonts, is given in Chapter 7 Characters, Entities and Fonts.

1.4 A First Example

The quadratic formula provides a simple but instructive illustration of MathML markup.

x = −b ± b2 − 4ac2a
MathML offers two flavors of markup of this formula. The first is the style which emphasizes the actual
presentation of a formula, the two-dimensional layout in which the symbols are arranged. An example of this
type is given just below. The second flavor emphasizes the mathematical content and an example of it follows
the first one.

<mrow>
 <mi>x</mi>
 <mo>=</mo>
 <mfrac>
 <mrow>
 <mrow>
 <mo>-</mo>
 <mi>b</mi>
 </mrow>
 <mo>±<!--PLUS-MINUS SIGN--></mo>
 <msqrt>
 <mrow>
 <msup>
 <mi>b</mi>
 <mn>2</mn>
 </msup>
 <mo>-</mo>
 <mrow>
 <mn>4</mn>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>a</mi>

1 Introduction

12

 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>c</mi>
 </mrow>
 </mrow>
 </msqrt>
 </mrow>
 <mrow>
 <mn>2</mn>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>a</mi>
 </mrow>
 </mfrac>
</mrow>

Consider the superscript 2 in this formula. It represents the squaring operation here, but the meaning of a super-
script in other situations depends on the context. A letter with a superscript can be used to signify a particular
component of a vector, or maybe the superscript just labels a different type of some structure. Similarly two
letters written one just after the other could signify two variables multiplied together, as they do in the quadratic
formula, or they could be two letters making up the name of a single variable. What is called Content Markup
in MathML allows closer specification of the mathematical meaning of many common formulas. The quadratic
formula given in this style of markup is as follows.

<apply>
 <eq/>
 <ci>x</ci>
 <apply>
 <divide/>
 <apply>
 <plus/>
 <apply>
 <minus/>
 <ci>b</ci>
 </apply>
 <apply>
 <root/>
 <apply>
 <minus/>
 <apply>
 <power/>
 <ci>b</ci>
 <cn>2</cn>
 </apply>
 <apply>
 <times/>
 <cn>4</cn>
 <ci>a</ci>
 <ci>c</ci>
 </apply>
 </apply>
 </apply>
 </apply>
 <apply>
 <times/>
 <cn>2</cn>
 <ci>a</ci>
 </apply>

1.4 A First Example

13

 </apply>
</apply>

1 Introduction

14

2 MathML Fundamentals

2.1 MathML Syntax and Grammar

2.1.1 General Considerations

The basic ‘syntax’ of MathML is defined using XML syntax, but other syntaxes that can encode labeled trees
are possible. Notably the HTML parser may also be used with MathML. Upon this, we layer a ‘grammar’,
being the rules for allowed elements, the order in which they can appear, and how they may be contained within
each other, as well as additional syntactic rules for the values of attributes. These rules are defined by this
specification, and formalized by a RelaxNG schema [RELAX-NG]. The RelaxNG Schema is normative, but a
DTD (Document Type Definition) and an XML Schema [XMLSchemas] are provided for continuity (they were
normative for MathML2). See Appendix A Parsing MathML.

MathML's character set consists of legal characters as specified by Unicode [Unicode], further restricted by
the characters not allowed in XML. The use of Unicode characters for mathematics is discussed in Chapter 7
Characters, Entities and Fonts.

The following sections discuss the general aspects of the MathML grammar as well as describe the syntaxes used
for attribute values.

2.1.2 MathML and Namespaces

An XML namespace [Namespaces] is a collection of names identified by a URI. The URI for the MathML
namespace is:

http://www.w3.org/1998/Math/MathML

To declare a namespace when using the XML serialisation of MathML, one uses an xmlns attribute, or an
attribute with an xmlns prefix. When the xmlns attribute is used alone, it sets the default namespace for the
element on which it appears, and for any child elements. For example:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...</mrow>
</math>

When the xmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly associate
other elements and attributes with a particular namespace. When embedding MathML within XHTML, one
might use:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
...
<m:math><m:mrow>...</m:mrow></m:math>
...
</body>

HTML does not support namespace extensibility in the same way, the HTML parser has in-built knowledge of
the HTML, SVG and MathML namespaces. xmlns attributes are just treated as normal attributes. Thus when
using the HTML serialisation of MathML, prefixed element names must not be used. xmlns="http://www.w3.
org/1998/Math/MathML" may be used on the math element, it will be ignored by the HTML parser, which
always places math elements and its descendents in the MathML namespace (other than special rules described
in Appendix A Parsing MathMLfor invalid input, and for annotation-xml. If a MathML expression is likely

15

to be in contexts where it may be parsed by an XML parser or an HTML parser, it SHOULD use the following
form to ensure maximum compatibility:

<math xmlns="http://www.w3.org/1998/Math/MathML">
 ...
</math>

2.1.3 Children versus Arguments

Most MathML elements act as ‘containers’; such an element's children are not distinguished from each other
except as individual members of the list of children. Commonly there is no limit imposed on the number of
children an element may have. This is the case for most presentation elements and some content elements such
as set. But many MathML elements require a specific number of children, or attach a particular meaning
to children in certain positions. Such elements are best considered to represent constructors of mathematical
objects, and hence thought of as functions of their children. Therefore children of such a MathML element will
often be referred to as its arguments instead of merely as children. Examples of this can be found, say, in Section
3.1.3 Required Arguments.

There are presentation elements that conceptually accept only a single argument, but which for convenience have
been written to accept any number of children; then we infer an mrow containing those children which acts as the
argument to the element in question; see Section 3.1.3.1 Inferred <mrow>s.

In the detailed discussions of element syntax given with each element throughout the MathML specification,
the correspondence of children with arguments, the number of arguments required and their order, as well as
other constraints on the content, are specified. This information is also tabulated for the presentation elements in
Section 3.1.3 Required Arguments.

2.1.4 MathML and Rendering

MathML presentation elements only recommend (i.e., do not require) specific ways of rendering; this is in order
to allow for medium-dependent rendering and for individual preferences of style.

Nevertheless, some parts of this specification describe these recommended visual rendering rules in detail; in
those descriptions it is often assumed that the model of rendering used supports the concepts of a well-defined
'current rendering environment' which, in particular, specifies a 'current font', a 'current display' (for pixel size)
and a 'current baseline'. The 'current font' provides certain metric properties and an encoding of glyphs.

2.1.5 MathML Attribute Values

MathML elements take attributes with values that further specialize the meaning or effect of the element.
Attribute names are shown in a monospaced font throughout this document. The meanings of attributes and
their allowed values are described within the specification of each element. The syntax notation explained in this
section is used in specifying allowed values.

Except when explicitly forbidden by the specification for an attribute, MathML attribute values may contain any
legal characters specified by the XML recommendation. See Chapter 7 Characters, Entities and Fonts for further
clarification.

2.1.5.1 Syntax notation used in the MathML specification

To describe the MathML-specific syntax of attribute values, the following conventions and notations are used for
most attributes in the present document. We use below the notation beginning with U+ that is recommended by
Unicode for referring to Unicode characters [see [Unicode], page xxviii].

2 MathML Fundamentals

16

Notation What it matches

decimal-digit a decimal digit from the range U+0030 to U+0039
hexadecimal-digit a hexadecimal (base 16) digit from the ranges U+0030 to U+0039, U+0041 to U+0046

and U+0061 to U+0066
unsigned-integer a string of decimal-digits, representing a non-negative integer
positive-integer a string of decimal-digits, but not consisting solely of "0"s (U+0030), representing a

positive integer
integer an optional "-" (U+002D), followed by a string of decimal digits, and representing an

integer
unsigned-number a string of decimal digits with up to one decimal point (U+002E), representing a non-

negative terminating decimal number (a type of rational number)
number an optional prefix of "-" (U+002D), followed by an unsigned number, representing a

terminating decimal number (a type of rational number)
character a single non-whitespace character
string an arbitrary, nonempty and finite, string of characters
length a length, as explained below, Section 2.1.5.2 Length Valued Attributes
unit a unit, typically used as part of a length, as explained below, Section 2.1.5.2 Length

Valued Attributes
namedlength a named length, as explained below, Section 2.1.5.2 Length Valued Attributes
color a color, as explained below, Section 2.1.5.3 Color Valued Attributes
id an identifier, unique within the document; must satisfy the NAME syntax of the XML

recommendation [XML]
idref an identifier referring to another element within the document; must satisfy the NAME

syntax of the XML recommendation [XML]
URI a Uniform Resource Identifier [RFC3986]. Note that the attribute value is typed in the

schema as anyURI which allows any sequence of XML characters. Systems needing to
use this string as a URI must encode the bytes of the UTF-8 encoding of any characters
not allowed in URI using %HH encoding where HH are the byte value in hexadecimal.
This ensures that such an attribute value may be interpreted as an IRI, or more generally a
LEIRI, see [IRI].

italicized word values as explained in the text for each attribute; see Section 2.1.5.4 Default values of
attributes

"literal" quoted symbol, literally present in the attribute value (e.g. "+" or '+')

The ‘types’ described above, except for string, may be combined into composite patterns using the following
operators. The whole attribute value must be delimited by single (') or double (") quotation marks in the marked
up document. Note that double quotation marks are often used in this specification to mark up literal expressions;
an example is the "-" in line 5 of the table above.

In the table below a form f means an instance of a type described in the table above. The combining operators are
shown in order of precedence from highest to lowest:

Notation What it matches

(f) same as f
f? an optional instance of f
f* zero or more instances of f, with separating whitespace characters
f+ one or more instances of f, with separating whitespace characters
f1 f2 ... fn one instance of each form fi, in sequence, with no separating whitespace

2.1 MathML Syntax and Grammar

17

Notation What it matches

f1, f2, ..., fn one instance of each form fi, in sequence, with separating whitespace characters (but no com-
mas)

f1 | f2 | ... | fn any one of the specified forms fi

The notation we have chosen here is in the style of the syntactical notation of the RelaxNG used for MathML's
basic schema, Appendix A Parsing MathML.

Since some applications are inconsistent about normalization of whitespace, for maximum interoperability it is
advisable to use only a single whitespace character for separating parts of a value. Moreover, leading and trailing
whitespace in attribute values should be avoided.

For most numerical attributes, only those in a subset of the expressible values are sensible; values outside this
subset are not errors, unless otherwise specified, but rather are rounded up or down (at the discretion of the
renderer) to the closest value within the allowed subset. The set of allowed values may depend on the renderer,
and is not specified by MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign ('-'), e.g.,
number or integer, it is not a syntax error when one is provided in cases where a negative value is not sensi-
ble. Instead, the value should be handled by the processing application as described in the preceding paragraph.
An explicit plus sign ('+') is not allowed as part of a numerical value except when it is specifically listed in the
syntax (as a quoted '+' or "+"), and its presence can change the meaning of the attribute value (as documented
with each attribute which permits it).

2.1.5.2 Length Valued Attributes

Most presentation elements have attributes that accept values representing lengths to be used for size, spacing or
similar properties. The syntax of a length is specified as

Type Syntax

length number | number unit | namedspace

There should be no space between the number and the unit of a length.

The possible units and namedspaces, along with their interpretations, are shown below. Note that although
the units and their meanings are taken from CSS, the syntax of lengths is not identical. A few MathML
elements have length attributes that accept additional keywords; these are termed pseudo-units and specified
in the description of those particular elements; see, for instance, Section 3.3.6 Adjust Space Around Content
<mpadded>.

A trailing "%" represents a percent of a reference value; unless otherwise stated, the reference value is the default
value. The default value, or how it is obtained, is listed in the table of attributes for each element along with
the reference value when it differs from the default. (See also Section 2.1.5.4 Default values of attributes.) A
number without a unit is intepreted as a multiple of the reference value. This form is primarily for backward
compatibility and should be avoided, prefering explicit units for clarity.

In some cases, the range of acceptable values for a particular attribute may be restricted; implementations are
free to round up or down to the closest allowable value.

The possible units in MathML are:

Unit Description

em an em (font-relative unit traditionally used for horizontal lengths)

2 MathML Fundamentals

18

Unit Description

ex an ex (font-relative unit traditionally used for vertical lengths)
px pixels, or size of a pixel in the current display
in inches (1 inch = 2.54 centimeters)
cm centimeters
mm millimeters
pt points (1 point = 1/72 inch)
pc picas (1 pica = 12 points)
% percentage of the reference value

Some additional aspects of units are discussed further below, in Section 2.1.5.2.1 Additional notes about units.

The following constants, namedspaces, may also be used where a length is needed; they are typically used
for spacing or padding between tokens. Recommended default values for these constants are shown; the actual
spacing used is implementation specific.

namedspace Recommended default

"veryverythinmathspace" 1/18 em
"verythinmathspace" 2/18 em
"thinmathspace" 3/18 em
"mediummathspace" 4/18 em
"thickmathspace" 5/18 em
"verythickmathspace" 6/18 em
"veryverythickmathspace" 7/18 em
"negativeveryverythinmathspace" -1/18 em
"negativeverythinmathspace" -2/18 em
"negativethinmathspace" -3/18 em
"negativemediummathspace" -4/18 em
"negativethickmathspace" -5/18 em
"negativeverythickmathspace" -6/18 em
"negativeveryverythickmathspace" -7/18 em

2.1.5.2.1 Additional notes about units

Lengths are only used in MathML for presentation, and presentation will ultimately involve rendering in or
on some medium. For visual media, the display context is assumed to have certain properties available to the
rendering agent. A px corresponds to a pixel on the display, to the extent that is meaningful. The resolution of
the display device will affect the correspondence of pixels to the units in, cm, mm, pt and pc.

Moreover, the display context will also provide a default for the font size; the parameters of this font determine
the initial values used to interpret the units em and ex, and thus indirectly the sizes of namedspaces. Since these
units track the display context, and in particular, the user's preferences for display, the relative units em and ex
are generally to be preferred over absolute units such as px or cm.

Two additional aspects of relative units must be clarified, however. First, some elements such as Section 3.4
Script and Limit Schemata or mfrac, implicitly switch to smaller font sizes for some of their arguments.
Similarly, mstyle can be used to explicitly change the current font size. In such cases, the effective values of an
em or ex inside those contexts will be different than outside. The second point is that the effective value of an em
or ex used for an attribute value can be affected by changes to the current font size. Thus, attributes that affect

2.1 MathML Syntax and Grammar

19

the current font size, such as mathsize and scriptlevel, must be processed before evaluating other length
valued attributes.

If, and how, lengths might affect non-visual media is implementation specific.

2.1.5.3 Color Valued Attributes

The color, or background color, of presentation elements may be specified as a color using the following syntax:

Type Syntax

color #RGB | #RRGGBB | html-color-name

A color is specified either by "#" followed by hexadecimal values for the red, green, and blue components, with
no intervening whitespace, or by an html-color-name. The color components can be either 1-digit or 2-digit,
but must all have the same number of digits; the component ranges from 0 (component not present) to FF
(component fully present). Note that, for example, by the digit-doubling rule specified under Colors in [CSS21]
#123 is a short form for #112233.

Color values can also be specified as an html-color-name, one of the color-name keywords defined in [HTML4]
("aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy", "olive", "purple", "red", "silver",
"teal", "white", and "yellow"). Note that the color name keywords are not case-sensitive, unlike most keywords
in MathML attribute values, for compatibility with CSS and HTML.

When a color is applied to an element, it is the color in which the content of tokens is rendered. Additionally,
when inherited from a surrounding element or from the environment in which the complete MathML expression
is embedded, it controls the color of all other drawing due to MathML elements, including the lines or radical
signs that can be drawn in rendering mfrac, mtable, or msqrt.

When used to specify a background color, the keyword "transparent" is also allowed. The recommended
MathML visual rendering rules do not define the precise extent of the region whose background is affected by
using the background attribute on an element, except that, when the element's content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this
region should lie behind all the drawing done to render the content of the element, but should not lie behind
any of the drawing done to render surrounding expressions. The effect of overlap of drawing regions caused by
negative spacing on the extent of the region affected by the background attribute is not defined by these rules.

2.1.5.4 Default values of attributes

Default values for MathML attributes are, in general, given along with the detailed descriptions of specific
elements in the text. Default values shown in plain text in the tables of attributes for an element are literal, but
when italicized are descriptions of how default values can be computed.

Default values described as inherited are taken from the rendering environment, as described in Section 3.3.4
Style Change <mstyle>, or in some cases (which are described individually) taken from the values of other
attributes of surrounding elements, or from certain parts of those values. The value used will always be one
which could have been specified explicitly, had it been known; it will never depend on the content or attributes
of the same element, only on its environment. (What it means when used may, however, depend on those
attributes or the content.)

Default values described as automatic should be computed by a MathML renderer in a way which will produce a
high-quality rendering; how to do this is not usually specified by the MathML specification. The value computed
will always be one which could have been specified explicitly, had it been known, but it will usually depend on
the element content and possibly on the context in which the element is rendered.

2 MathML Fundamentals

20

Other italicized descriptions of default values which appear in the tables of attributes are explained individually
for each attribute.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the
tables of attribute value syntax for each element, but are around attribute values in examples in the text, so that
the pieces of code shown are correct.

Note that, in general, there is no mechanism in MathML to simulate the effect of not specifying attributes which
are inherited or automatic. Giving the words "inherited" or "automatic" explicitly will not work, and is not
generally allowed. Furthermore, the mstyle element (Section 3.3.4 Style Change <mstyle>) can even be used
to change the default values of presentation attributes for its children.

Note also that these defaults describe the behavior of MathML applications when an attribute is not supplied;
they do not indicate a value that will be filled in by an XML parser, as is sometimes mandated by DTD-based
specifications.

In general, there are a number of properties of MathML rendering that may be thought of as overall properties
of a document, or at least of sections of a large document. Examples might be mathsize (the math font size:
see Section 3.2.2 Mathematics style attributes common to token elements), or the behavior in setting limits on
operators such as integrals or sums (e.g., movablelimits or displaystyle), or upon breaking formulas over
lines (e.g. linebreakstyle); for such attributes see several elements in Section 3.2 Token Elements. These
may be thought to be inherited from some such containing scope. Just above we have mentioned the setting of
default values of MathML attributes as inherited or automatic; there is a third source of global default values for
behavior in rendering MathML, a MathML operator dictionary. A default example is provided in Appendix C
Operator Dictionary. This is also discussed in Section 3.2.5.7.1 The operator dictionary and examples are given
in Section 3.2.5.2.1 Dictionary-based attributes.

2.1.6 Attributes Shared by all MathML Elements

In addition to the attributes described specifically for each element, the attributes in the following table are
allowed on every MathML element. Also allowed are attributes from the xml namespace, such as xml:lang,
and attributes from namespaces other than MathML, which are ignored by default.

Name values default

id id none
Establishes a unique identifier associated with the element to support linking, cross-references and
parallel markup. See xref and Section 5.4 Parallel Markup.

xref idref none
References another element within the document. See id and Section 5.4 Parallel Markup.

class string none
Associates the element with a set of style classes for use with [XSLT] and [CSS21]. Typically this
would be a space separated sequence of words, but this is not specified by MathML. See Section
6.5 Using CSS with MathML for discussion of the interaction of MathML and CSS.

style string none
Associates style information with the element for use with [XSLT] and [CSS21]. This typically
would be an inline CSS style, but this is not specified by MathML. See Section 6.5 Using CSS with
MathML for discussion of the interaction of MathML and CSS.

href URI none
Can be used to establish the element as a hyperlink to the specfied URI.

2.1 MathML Syntax and Grammar

21

Note that MathML 2 had no direct support for linking, and instead followed the W3C Recommendation "XML
Linking Language" [XLink] in defining links using the xlink:href attribute. This has changed, and MathML
3 now uses an href attribute. However, particular compound document formats may specify the use of XML
linking with MathML elements, so user agents that support XML linking should continue to support the use of
the xlink:href attribute with MathML 3 as well.

See also Section 3.2.2 Mathematics style attributes common to token elements for a list of MathML attributes
which can be used on most presentation token elements.

The attribute other, is deprecated (Section 2.3.3 Attributes for unspecified data) in favor of the use of attributes
from other namespaces.

Name values default

other string none
DEPRECATED but in MathML 1.0.

2.1.7 Collapsing Whitespace in Input

In MathML, as in XML, "whitespace" means simple spaces, tabs, newlines, or carriage returns, i.e., characters
with hexadecimal Unicode codes U+0020, U+0009, U+000A, or U+000D, respectively; see also the discussion
of whitespace in Section 2.3 of [XML].

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there.
Whitespace occurring within the content of token elements, except for <cs>, is normalized as follows. All
whitespace at the beginning and end of the content is removed, and whitespace internal to content of the element
is collapsed canonically, i.e., each sequence of 1 or more whitespace characters is replaced with one space
character (U+0020, sometimes called a blank character).

For example, <mo> (</mo> is equivalent to <mo>(</mo>, and

<mtext>
 Theorem
 1:
</mtext>

is equivalent to <mtext>Theorem 1:</mtext> or <mtext>Theorem 1:</mtext>.

Authors wishing to encode white space characters at the start or end of the content of a token, or in sequences
other than a single space, without having them ignored, must use (U+00A0) or other non-marking
characters that are not trimmed. For example, compare the above use of an mtext element with

<mtext>
 <!--NO-BREAK SPACE-->Theorem <!--NO-BREAK SPACE-->1:
</mtext>

When the first example is rendered, there is nothing before "Theorem", one Unicode space character between
"Theorem" and "1:", and nothing after "1:". In the second example, a single space character is to be rendered
before "Theorem"; two spaces, one a Unicode space character and one a Unicode no-break space character, are
to be rendered before "1:"; and there is nothing after the "1:".

Note that the value of the xml:space attribute is not relevant in this situation since XML processors pass
whitespace in tokens to a MathML processor; it is the requirements of MathML processing which specify that
whitespace is trimmed and collapsed.

2 MathML Fundamentals

22

For whitespace occurring outside the content of the token elements mi, mn, mo, ms, mtext, ci, cn, cs, csymbol
and annotation, an mspace element should be used, as opposed to an mtext element containing only white-
space entities.

2.2 The Top-Level <math> Element

MathML specifies a single top-level or root math element, which encapsulates each instance of MathML markup
within a document. All other MathML content must be contained in a math element; in other words, every valid
MathML expression is wrapped in outer <math> tags. The math element must always be the outermost element
in a MathML expression; it is an error for one math element to contain another. These considerations also apply
when sub-expressions are passed between applications, such as for cut-and-paste operations; See Section 6.3
Transferring MathML.

The math element can contain an arbitrary number of child elements. They render by default as if they were
contained in an mrow element.

2.2.1 Attributes

The math element accepts any of the attributes that can be set on Section 3.3.4 Style Change <mstyle>, includ-
ing the common attributes specified in Section 2.1.6 Attributes Shared by all MathML Elements. In particular, it
accepts the dir attribute for setting the overall directionality; the math element is usually the most useful place
to specify the directionality (See Section 3.1.5 Directionality for further discussion). Note that the dir attribute
defaults to "ltr" on the math element (but inherits on all other elements which accept the dir attribute); this
provides for backward compatibility with MathML 2.0 which had no notion of directionality. Also, it accepts the
mathbackground attribute in the same sense as mstyle and other presentation elements to set the background
color of the bounding box, rather than specifying a default for the attribute (see Section 3.1.10 Mathematics style
attributes common to presentation elements)

In addition to those attributes, the math element accepts:

Name values default

display "block" | "inline" inline
specifies whether the enclosed MathML expression should be rendered as a separate
vertical block (in display style) or inline, aligned with adjacent text. When display=
"block", displaystyle is initialized to "true", whereas when display="inline",
displaystyle is initialized to "false"; in both cases scriptlevel is initialized to
0 (See Section 3.1.6 Displaystyle and Scriptlevel). Moreover, when the math element
is embedded in a larger document, a block math element should be treated as a block
element as appropriate for the document type (typically as a new vertical block), whereas
an inline math element should be treated as inline (typically exactly as if it were a
sequence of words in normal text). In particular, this applies to spacing and linebreaking:
for instance, there should not be spaces or line breaks inserted between inline math
and any immediately following punctuation. When the display attribute is missing, a
rendering agent is free to initialize as appropriate to the context.

maxwidth length available width
specifies the maximum width to be used for linebreaking. The default is the maximum
width available in the surrounding environment. If that value cannot be determined, the
renderer should assume an infinite rendering width.

2.2 The Top-Level <math> Element

23

Name values default

overflow "linebreak" | "scroll" | "elide" | "truncate" |
"scale"

linebreak

specifies the preferred handing in cases where an expression is too long to fit in the
allowed width. See the discussion below.

altimg URI none
provides a URI referring to an image to display as a fall-back for user agents that do not
support embedded MathML.

altimg-width length width of altimg
specifies the width to display altimg, scaling the image if necessary; See altimg-
height.

altimg-height length height of altimg
specifies the height to display altimg, scaling the image if necessary; if only one of the
attributes altimg-width and altimg-height are given, the scaling should preserve
the image's aspect ratio; if neither attribute is given, the image should be shown at its
natural size.

altimg-valign length | "top" | "middle" | "bottom" 0ex
specifies the vertical alignment of the image with respect to adjacent inline material.
A positive value of altimg-valign shifts the bottom of the image above the current
baseline, while a negative value lowers it. The keyword "top" aligns the top of the image
with the top of adjacent inline material; "center" aligns the middle of the image to the
middle of adjacent material; "bottom" aligns the bottom of the image to the bottom
of adjacent material (not necessarily the baseline). This attribute only has effect when
display="inline". By default, the bottom of the image aligns to the baseline.

alttext string none
provides a textual alternative as a fall-back for user agents that do not support embedded
MathML or images.

cdgroup URI none
specifies a CD group file that acts as a catalogue of CD bases for locating OpenMath
content dictionaries of csymbol, annotation, and annotation-xml elements in this
math element; see Section 4.2.3 Content Symbols <csymbol>. When no cdgroup
attribute is explicitly specified, the document format embedding this math element may
provide a method for determining CD bases. Otherwise the system must determine
a CD base; in the absence of specific information http://www.openmath.org/cd
is assumed as the CD base for all csymbol, annotation, and annotation-xml
elements. This is the CD base for the collection of standard CDs maintained by the
OpenMath Society.

In cases where size negotiation is not possible or fails (for example in the case of an expression that is too long
to fit in the allowed width), the overflow attribute is provided to suggest a processing method to the renderer.
Allowed values are:

Value Meaning

"linebreak" The expression will be broken across several lines. See Section 3.1.7 Linebreaking of Expres-
sions for further discussion.

"scroll" The window provides a viewport into the larger complete display of the mathematical expres-
sion. Horizontal or vertical scroll bars are added to the window as necessary to allow the
viewport to be moved to a different position.

2 MathML Fundamentals

24

Value Meaning

"elide" The display is abbreviated by removing enough of it so that the remainder fits into the window.
For example, a large polynomial might have the first and last terms displayed with "+ ... +"
between them. Advanced renderers may provide a facility to zoom in on elided areas.

"truncate" The display is abbreviated by simply truncating it at the right and bottom borders. It is recom-
mended that some indication of truncation is made to the viewer.

"scale" The fonts used to display the mathematical expression are chosen so that the full expression fits
in the window. Note that this only happens if the expression is too large. In the case of a window
larger than necessary, the expression is shown at its normal size within the larger window.

2.2.2 Deprecated Attributes

The following attributes of math are deprecated:

Name values default

macros URI * none
intended to provide a way of pointing to external macro definition files. Macros are not part of the
MathML specification.

mode "display" | "inline" inline
specified whether the enclosed MathML expression should be rendered in a display style or an
inline style. This attribute is deprecated in favor of the display attribute.

2.3 Conformance

Information nowadays is commonly generated, processed and rendered by software tools. The exponential
growth of the Web is fueling the development of advanced systems for automatically searching, categorizing,
and interconnecting information. In addition, there are increasing numbers of Web services, some of which offer
technically based materials and activities. Thus, although MathML can be written by hand and read by humans,
whether machine-aided or just with much concentration, the future of MathML is largely tied to the ability to
process it with software tools.

There are many different kinds of MathML processors: editors for authoring MathML expressions, translators
for converting to and from other encodings, validators for checking MathML expressions, computation engines
that evaluate, manipulate, or compare MathML expressions, and rendering engines that produce visual, aural,
or tactile representations of mathematical notation. What it means to support MathML varies widely between
applications. For example, the issues that arise with a validating parser are very different from those for an
equation editor.

This section gives guidelines that describe different types of MathML support and make clear the extent of
MathML support in a given application. Developers, users, and reviewers are encouraged to use these guidelines
in characterizing products. The intention behind these guidelines is to facilitate reuse by and interoperability of
MathML applications by accurately setting out their capabilities in quantifiable terms.

The W3C Math Working Group maintains MathML Compliance Guidelines. Consult this document for future
updates on conformance activities and resources.

2.3.1 MathML Conformance

A valid MathML expression is an XML construct determined by the MathML RelaxNG Schema together with
the additional requirements given in this specification.

2.3 Conformance

25

http://www.w3.org/Math/iandi/compliance

We shall use the phrase "a MathML processor" to mean any application that can accept or produce a valid
MathML expression. A MathML processor that both accepts and produces valid MathML expressions may be
able to "round-trip" MathML. Perhaps the simplest example of an application that might round-trip a MathML
expression would be an editor that writes it to a new file without modifications.

Three forms of MathML conformance are specified:

1. A MathML-input-conformant processor must accept all valid MathML expressions; it should appropriately 1.
translate all MathML expressions into application-specific form allowing native application operations to
be performed.

2. A MathML-output-conformant processor must generate valid MathML, appropriately representing all 2.
application-specific data.

3. A MathML-round-trip-conformant processor must preserve MathML equivalence. Two MathML expres-3.
sions are "equivalent" if and only if both expressions have the same interpretation (as stated by the
MathML Schema and specification) under any relevant circumstances, by any MathML processor. Equiva-
lence on an element-by-element basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In order to
guide developers, the MathML specification includes advisory material; for example, there are many recommen-
ded rendering rules throughout Chapter 3 Presentation Markup. However, in general, developers are given wide
latitude to interpret what kind of MathML implementation is meaningful for their own particular application.

To clarify the difference between conformance and interpretation of what is meaningful, consider some exam-
ples:

1. In order to be MathML-input-conformant, a validating parser needs only to accept expressions, and return 1.
"true" for expressions that are valid MathML. In particular, it need not render or interpret the MathML
expressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all presentation 2.
markup. Provided the interface accepts all valid MathML expressions including those containing presenta-
tion markup, it would be technically correct to characterize the application as MathML-input-conformant.

3. An equation editor might have an internal data representation that makes it easy to export some equations 3.
as MathML but not others. If the editor exports the simple equations as valid MathML, and merely
displays an error message to the effect that conversion failed for the others, it is still technically MathML-
output-conformant.

2.3.1.1 MathML Test Suite and Validator

As the previous examples show, to be useful, the concept of MathML conformance frequently involves a
judgment about what parts of the language are meaningfully implemented, as opposed to parts that are merely
processed in a technically correct way with respect to the definitions of conformance. This requires some
mechanism for giving a quantitative statement about which parts of MathML are meaningfully implemented by a
given application. To this end, the W3C Math Working Group has provided a test suite.

The test suite consists of a large number of MathML expressions categorized by markup category and dominant
MathML element being tested. The existence of this test suite makes it possible, for example, to characterize
quantitatively the hypothetical computer algebra interface mentioned above by saying that it is a MathML-input-
conformant processor which meaningfully implements MathML content markup, including all of the expressions
in the content markup section of the test suite.

Developers who choose not to implement parts of the MathML specification in a meaningful way are encouraged
to itemize the parts they leave out by referring to specific categories in the test suite.

2 MathML Fundamentals

26

http://www.w3.org/Math/testsuite/

For MathML-output-conformant processors, information about currently available tools to validate MathML
is maintained at the W3C MathML Validator. Developers of MathML-output-conformant processors are encour-
aged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specification are
implemented by an application are encouraged to use the test suites as a part of their decision processes.

2.3.1.2 Deprecated MathML 1.x and MathML 2.x Features

MathML 3.0 contains a number of features of earlier MathML which are now deprecated. The following points
define what it means for a feature to be deprecated, and clarify the relation between deprecated features and
current MathML conformance.

1. In order to be MathML-output-conformant, authoring tools may not generate MathML markup containing 1.
deprecated features.

2. In order to be MathML-input-conformant, rendering and reading tools must support deprecated features if 2.
they are to be in conformance with MathML 1.x or MathML 2.x. They do not have to support deprecated
features to be considered in conformance with MathML 3.0. However, all tools are encouraged to support
the old forms as much as possible.

3. In order to be MathML-round-trip-conformant, a processor need only preserve MathML equivalence on 3.
expressions containing no deprecated features.

2.3.1.3 MathML Extension Mechanisms and Conformance

MathML 3.0 defines three basic extension mechanisms: the mglyph element provides a way of displaying
glyphs for non-Unicode characters, and glyph variants for existing Unicode characters; the maction element
uses attributes from other namespaces to obtain implementation-specific parameters; and content markup makes
use of the definitionURL attribute, as well as Content Dictionaries and the cd attribute, to point to external
definitions of mathematical semantics.

These extension mechanisms are important because they provide a way of encoding concepts that are beyond
the scope of MathML 3.0 as presently explicitly specified, which allows MathML to be used for exploring new
ideas not yet susceptible to standardization. However, as new ideas take hold, they may become part of future
standards. For example, an emerging character that must be represented by an mglyph element today may be
assigned a Unicode code point in the future. At that time, representing the character directly by its Unicode code
point would be preferable. This transition into Unicode has already taken place for hundreds of characters used
for mathematics.

Because the possibility of future obsolescence is inherent in the use of extension mechanisms to facilitate the
discussion of new ideas, MathML can reasonably make no conformance requirements concerning the use of
extension mechanisms, even when alternative standard markup is available. For example, using an mglyph
element to represent an 'x' is permitted. However, authors and implementers are strongly encouraged to use
standard markup whenever possible. Similarly, maintainers of documents employing MathML 3.0 extension
mechanisms are encouraged to monitor relevant standards activity (e.g., Unicode, OpenMath, etc.) and to update
documents as more standardized markup becomes available.

2.3.2 Handling of Errors

If a MathML-input-conformant application receives input containing one or more elements with an illegal num-
ber or type of attributes or child schemata, it should nonetheless attempt to render all the input in an intelligible
way, i.e., to render normally those parts of the input that were valid, and to render error messages (rendered as if
enclosed in an merror element) in place of invalid expressions.

2.3 Conformance

27

http://www.w3.org/Math/validator/

MathML-output-conformant applications such as editors and translators may choose to generate merror expres-
sions to signal errors in their input. This is usually preferable to generating valid, but possibly erroneous,
MathML.

2.3.3 Attributes for unspecified data

The MathML attributes described in the MathML specification are intended to allow for good presentation
and content markup. However it is never possible to cover all users' needs for markup. Ideally, the MathML
attributes should be an open-ended list so that users can add specific attributes for specific renderers. However,
this cannot be done within the confines of a single XML DTD or in a Schema. Although it can be done using
extensions of the standard DTD, say, some authors will wish to use non-standard attributes to take advantage of
renderer-specific capabilities while remaining strictly in conformance with the standard DTD.

To allow this, the MathML 1.0 specification [MathML1] allowed the attribute other on all elements, for use as
a hook to pass on renderer-specific information. In particular, it was intended as a hook for passing information
to audio renderers, computer algebra systems, and for pattern matching in future macro/extension mechanisms.
The motivation for this approach to the problem was historical, looking to PostScript, for example, where
comments are widely used to pass information that is not part of PostScript.

In the next period of evolution of MathML the development of a general XML namespace mechanism seemed
to make the use of the other attribute obsolete. In MathML 2.0, the other attribute is deprecated in favor of
the use of namespace prefixes to identify non-MathML attributes. The other attribute remains deprecated in
MathML 3.0.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-specific
implementation for the maction element (Section 3.7.1 Bind Action to Sub-Expression <maction>), that
information should be passed in using the other attribute:

<maction actiontype="highlight" other="color='#ff0000'"> expression </maction>

From MathML 2.0 onwards, a color attribute from another namespace would be used:

<body xmlns:my="http://www.example.com/MathML/extensions">
...
<maction actiontype="highlight" my:color="#ff0000"> expression </maction>
...
</body>

Note that the intent of allowing non-standard attributes is not to encourage software developers to use this as
a loophole for circumventing the core conventions for MathML markup. Authors and applications should use
non-standard attributes judiciously.

2 MathML Fundamentals

28

3 Presentation Markup

3.1 Introduction

This chapter specifies the "presentation" elements of MathML, which can be used to describe the layout structure
of mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the "constructors" of traditional mathematical notation — that is, to the
basic kinds of symbols and expression-building structures out of which any particular piece of traditional
mathematical notation is built. Because of the importance of traditional visual notation, the descriptions of the
notational constructs the elements represent are usually given here in visual terms. However, the elements are
medium-independent in the sense that they have been designed to contain enough information for good spoken
renderings as well. Some attributes of these elements may make sense only for visual media, but most attributes
can be treated in an analogous way in audio as well (for example, by a correspondence between time duration
and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow
for medium-dependent rendering and for individual preferences of style. This specification describes suggested
visual rendering rules in some detail, but a particular MathML renderer is free to use its own rules as long as its
renderings are intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the
same way as titles, sections, and paragraphs capture the higher-level syntactic structure of a textual document.
Because of this, a single row of identifiers and operators will often be represented by multiple nested mrow
elements rather than a single mrow. For example, "x + a/b" typically is represented as:

<mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mrow>
 <mi> a </mi>
 <mo> / </mo>
 <mi> b </mi>
 </mrow>
</mrow>

Similarly, superscripts are attached to the full expression constituting their base rather than to the just preceding
character. This structure permits better-quality rendering of mathematics, especially when details of the rendering
environment, such as display widths, are not known ahead of time to the document author. It also greatly eases
automatic interpretation of the represented mathematical structures.

Certain characters are used to name identifiers or operators that in traditional notation render the same as other
symbols or usually rendered invisibly. For example, the entities ⅆ, ⅇ, and
ⅈ denote notational symbols semantically distinct from visually identical letters used as simple
variables. Likewise, the entities ⁢, ⁡, ⁣ and the char-
acter U+2064 (INVISIBLE PLUS) usually render invisibly but represent significant information. These entities
have distinct spoken renderings, may influence visual linebreaking and spacing, and may effect the evaluation or
meaning of particular expressions. Accordingly, authors should use these entities wherever they are applicable.
For instance, the expression represented visually as "f x " would usually be spoken in English as "f of x" rather

29

than just "f x". MathML conveys this meaning by using the ⁡ operator after the "f", which,
in this case, can be aurally rendered as "of".

The complete list of MathML entities is described in [Entities].

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read Section 2.1 MathML Syntax and
Grammar on MathML syntax and grammar, which contains important information on MathML notations and
conventions. In particular, in this chapter it is assumed that the reader has an understanding of basic XML termi-
nology described in Section 2.1.3 Children versus Arguments, and the attribute value notations and conventions
described in Section 2.1.5 MathML Attribute Values.

The remainder of this section introduces MathML-specific terminology and conventions used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two classes. Token elements represent individual symbols, names,
numbers, labels, etc. Layout schemata build expressions out of parts and can have only elements as content
(except for whitespace, which they ignore). These are subdivided into General Layout, Script and Limit, Tabular
Math and Elementary Math schemata. There are also a few empty elements used only in conjunction with certain
layout schemata.

All individual "symbols" in a mathematical expression should be represented by MathML token elements. The
primary MathML token element types are identifiers (e.g. variables or function names), numbers, and operators
(including fences, such as parentheses, and separators, such as commas). There are also token elements used
to represent text or whitespace that has more aesthetic than mathematical significance and other elements
representing "string literals" for compatibility with computer algebra systems. Note that although a token ele-
ment represents a single meaningful "symbol" (name, number, label, mathematical symbol, etc.), such symbols
may be comprised of more than one character. For example sin and 24 are represented by the single tokens
<mi>sin</mi> and <mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions, and
ultimately out of single symbols, with the parts grouped and positioned using one of a small set of notational
structures, which can be thought of as "expression constructors". In MathML, expressions are constructed in the
same way, with the layout schemata playing the role of the expression constructors. The layout schemata specify
the way in which sub-expressions are built into larger expressions. The terminology derives from the fact that
each layout schema corresponds to a different way of "laying out" its sub-expressions to form a larger expression
in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between elements,
is as follows: The presentation elements are the MathML elements defined in this chapter. These elements are
listed in Section 3.1.9 Summary of Presentation Elements. The content elements are the MathML elements
defined in Chapter 4 Content Markup.

A MathML expression is a single instance of any of the presentation elements with the exception of the empty
elements none or mprescripts, or is a single instance of any of the content elements which are allowed
as content of presentation elements (described in Section 5.3.2 Content Markup in Presentation Markup). A
sub-expression of an expression E is any MathML expression that is part of the content of E, whether directly or
indirectly, i.e. whether it is a "child" of E or not.

3 Presentation Markup

30

Since layout schemata attach special meaning to the number and/or positions of their children, a child of a layout
schema is also called an argument of that element. As a consequence of the above definitions, the content of a
layout schema consists exactly of a sequence of zero or more elements that are its arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed
descriptions of element syntax given below, the number of required arguments is implicitly indicated by giving
names for the arguments at various positions. A few elements have additional requirements on the number
or type of arguments, which are described with the individual element. For example, some elements accept
sequences of zero or more arguments — that is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered space do count as arguments of the elements in which they
appear. See Section 3.2.7 Space <mspace/> for a discussion of the proper use of such space-like elements.

3.1.3.1 Inferred <mrow>s

The elements listed in the following table as requiring 1* argument (msqrt, mstyle, merror, mpadded,
mphantom, menclose, mtd, mscarry, and math) conceptually accept a single argument, but actually accept
any number of children. If the number of children is 0 or is more than 1, they treat their contents as a single
inferred mrow formed from all their children, and treat this mrow as the argument.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
 <mrow>
 </mrow>
</mtd>

and

<msqrt>
 <mo> - </mo>
 <mn> 1 </mn>
</msqrt>

is treated as if it were

<msqrt>
 <mrow>
 <mo> - </mo>
 <mn> 1 </mn>
 </mrow>
</msqrt>

This feature allows MathML data not to contain (and its authors to leave out) many mrow elements that would
otherwise be necessary.

3.1 Introduction

31

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element's argument count requirements and the roles of individual
arguments when these are distinguished. An argument count of 1* indicates an inferred mrow as described above.
Although the math element is not a presentation element, it is listed below for completeness.

Element Required argument count Argument roles (when these differ by position)

mrow 0 or more
mfrac 2 numerator denominator
msqrt 1*
mroot 2 base index
mstyle 1*
merror 1*
mpadded 1*
mphantom 1*
mfenced 0 or more
menclose 1*
msub 2 base subscript
msup 2 base superscript
msubsup 3 base subscript superscript
munder 2 base underscript
mover 2 base overscript
munderover 3 base underscript overscript
mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/> (presub-

script presuperscript)*]
mtable 0 or more rows 0 or more mtr or mlabeledtr elements
mlabeledtr 1 or more a label and 0 or more mtd elements
mtr 0 or more 0 or more mtd elements
mtd 1*
mstack 0 or more
mlongdiv 3 or more divisor result dividend (msrow | msgroup | mscarries | msline)*
msgroup 0 or more
msrow 0 or more
mscarries 0 or more
mscarry 1*
maction 1 or more depend on actiontype attribute
math 1*

3.1.4 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are
discussed in the detailed element descriptions below. However, for convenience, some of the most important
classes of special behavior are listed here.

Certain elements are considered space-like; these are defined in Section 3.2.7 Space <mspace/>. This definition
affects some of the suggested rendering rules for mo elements (Section 3.2.5 Operator, Fence, Separator or
Accent <mo>).

3 Presentation Markup

32

Certain elements, e.g. msup, are able to embellish operators that are their first argument. These elements are
listed in Section 3.2.5 Operator, Fence, Separator or Accent <mo>, which precisely defines an "embellished
operator" and explains how this affects the suggested rendering rules for stretchy operators.

3.1.5 Directionality

In the notations familiar to most readers, both the overall layout and the textual symbols are arranged from left to
right (LTR). Yet, as alluded to in the introduction, mathematics written in Hebrew or in locales such as Morocco
or Persia, the overall layout is used unchanged, but the embedded symbols (often Hebrew or Arabic) are written
right to left (RTL). Moreover, in most of the Arabic speaking world, the notation is arranged entirely RTL; thus a
superscript is still raised, but it follows the base on the left rather than the right.

MathML 3.0 therefore recognizes two distinct directionalities: the directionality of the text and symbols within
token elements and the overall directionality represented by Layout Schemata. These two facets are discussed
below.

3.1.5.1 Overall Directionality of Mathematics Formulas

The overall directionality for a formula, basically the direction of the Layout Schemata, is specified by the dir
attribute on the containing math element (see Section 2.2 The Top-Level <math> Element). The default is ltr.
When dir="rtl" is used, the layout is simply the mirror image of the conventional European layout. That is,
shifts up or down are unchanged, but the progression in laying out is from right to left.

For example, in a RTL layout, sub- and superscripts appear to the left of the base; the surd for a root appears
at the right, with the bar continuing over the base to the left. The layout details for elements whose behaviour
depends on directionality are given in the discussion of the element. In those discussions, the terms leading and
trailing are used to specify a side of an object when which side to use depends on the directionality; ie. leading
means left in LTR but right in RTL. The terms left and right may otherwise be safely assumed to mean left and
right.

The overall directionality is usually set on the math, but may also be switched for individual subformula by
using the dir attribute on mrow or mstyle elements. When not specified, all elements inherit the directionality
of their container.

3.1.5.2 Bidirectional Layout in Token Elements

The text directionality comes into play for the MathML token elements that can contain text (mtext, mo, mi,
mn and ms) and is determined by the Unicode properties of that text. A token element containing exclusively
LTR or RTL characters is displayed straightforwardly in the given direction. When a mixture of directions is
involved used, such as RTL Arabic and LTR numbers, the Unicode bidirectional algorithm [Bidi] is applied.
This algorithm specifies how runs of characters with the same direction are processed and how the runs are
(re)ordered. The base, or initial, direction is given by the overall directionality described above (Section 3.1.5.1
Overall Directionality of Mathematics Formulas) and affects how weakly directional characters are treated and
how runs are nested. (The dir attribute is thus allowed on token elements to specify the initial directionality
that may be needed in rare cases.) Any mglyph or malignmark elements appearing within a token element are
effectively neutral and have no effect on ordering.

The important thing to notice is that the bidirectional algorithm is applied independently to the contents of each
token element; each token element is an independent run of characters.

Other features of Unicode and scripts that should be respected are ‘mirroring’ and ‘glyph shaping’. Some Uni-
code characters are marked as being mirrored when presented in a RTL context; that is, the character is drawn
as if it were mirrored or replaced by a corresponding character. Thus an opening parenthesis, ‘(’, in RTL will
display as ‘)’. Conversely, the solidus (/ U+002F) is not marked as mirrored. Thus, an Arabic author that desires

3.1 Introduction

33

the slash to be reversed in an inline division should explicitly use reverse solidus (\ U+005C) or an alternative
such as the mirroring DIVISION SLASH (U+2215).

Additionally, calligraphic scripts such as Arabic blend, or connect sequences of characters together, changing
their appearance. As this can have an significant impact on readability, as well as aesthetics, it is important
to apply such shaping if possible. Glyph shaping, like directionality, applies to each token element's contents
individually.

Please note that for the transfinite cardinals represented by Hebrew characters, the code points U+2135-U+2138
(ALEF SYMBOL, BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used. These are strong
left-to-right.

3.1.6 Displaystyle and Scriptlevel

So-called ‘displayed’ formulas, those appearing on a line by themselves, typically make more generous use of
vertical space than inline formulas, which should blend into the adjacent text without intruding into neighboring
lines. For example, in a displayed summation, the limits are placed above and below the summation symbol,
while when it appears inline the limits would appear in the sub and superscript position. For similar reasons, sub-
and superscripts, nested fractions and other constructs typically display in a smaller size than the main part of
the formula. MathML implicitly associates with every presentation node a displaystyle and scriptlevel
reflecting whether a more expansive vertical layout applies and the level of scripting in the current context.

These values are initialized by the math element according to the display attribute. They are automatically
adjusted by the various script and limit schemata elements, and the elements mfrac and mroot, which typically
set displaystyle false and increment scriptlevel for some or all of their arguments. (See the description
for each element for the specific rules used.) They also may be set explicitly via the displaystyle and
scriptlevel attributes on the mstyle element or the displaystyle attribute of mtable. In all other cases,
they are inherited from the node's parent.

The displaystyle affects the amount of vertical space used to lay out a formula: when true, the more spacious
layout of displayed equations is used, whereas when false a more compact layout of inline formula is used. This
primarily affects the interpretation of the largeop and movablelimits attributes of the mo element. However,
more sophisticated renderers are free to use this attribute to render more or less compactly.

The main effect of scriptlevel is to control the font size. Typically, the higher the scriptlevel, the smaller
the font size. (Non-visual renderers can respond to the font size in an analogous way for their medium.) When-
ever the scriptlevel is changed, whether automatically or explicitly, the current font size is multiplied by
the value of scriptsizemultiplier to the power of the change in scriptlevel. However, changes to the
font size due to scriptlevel changes should never reduce the size below scriptminsize to prevent scripts
becoming unreadably small. The default scriptsizemultiplier is approximately the square root of 1/2
whereas scriptminsize defaults to 8 points; these values may be changed on mstyle; see Section 3.3.4 Style
Change <mstyle>. Note that the scriptlevel attribute of mstyle allows arbitrary values of scriptlevel to
be obtained, including negative values which result in increased font sizes.

The changes to the font size due to scriptlevel should be viewed as being imposed from ‘outside’ the
node. This means that the effect of scriptlevel is applied before an explicit mathsize (see Section 3.2.2
Mathematics style attributes common to token elements) on a token child of mfrac. Thus, the mathsize
effectively overrides the effect of scriptlevel. However, that change to scriptlevel changes the current
font size, which affects the meaning of an "em" length (see Section 2.1.5.2 Length Valued Attributes) and so
the scriptlevel still may have an effect in such cases. Note also that since mathsize is not constrained by
scriptminsize, such direct changes to font size can result in scripts smaller than scriptminsize.

3 Presentation Markup

34

Note that direct changes to current font size, whether by CSS or by the mathsize attribute (See Section 3.2.2
Mathematics style attributes common to token elements), have no effect on the value of scriptlevel.

TEX's \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle correspond to displaystyle and
scriptlevel as "true" and "0", "false" and "0", "false" and "1", and "false" and "2", respectively. Thus,
math's display="block" corresponds to \displaystyle, while display="inline" corresponds to \textstyle.

3.1.7 Linebreaking of Expressions

3.1.7.1 Control of Linebreaks

MathML provides support for both automatic and manual (forced) linebreaking of expressions to break exces-
sively long expressions into several lines. All such linebreaks take place within mrow (including inferred mrow;
see Section 3.1.3.1 Inferred <mrow>s) or mfenced. The breaks typically take place at mo elements and also, for
backwards compatibility, at mspace. Renderers may also choose to place automatic linebreaks at other points
such as between adjacent mi elements or even within a token element such as a very long mn element. MathML
does not provide a means to specify such linebreaks, but if a render chooses to linebreak at such a point, it should
indent the following line according to the indentation attributes that are in effect at that point.

Automatic linebreaking occurs when the containing math element has overflow="linebreak" and the display
engine determines that there is not enough space available to display the entire formula. The available width
must therefore be known to the renderer. Like font properties, one is assumed to be inherited from the environ-
ment in which the MathML element lives. If no width can be determined, an infinite width should be assumed.
Inside of a mtable, each column has some width. This width may be specified as an attribute or determined by
the contents. This width should be used as the line wrapping width for linebreaking, and each entry in an mtable
is linewrapped as needed.

Forced linebreaks are specified by using linebreak="newline" on a mo or mspace element. Both automatic
and manual linebreaking can occur within the same formula.

Automatic linebreaking of subexpressions of mfrac, msqrt, mroot and menclose and the various script
elements is not required. Renderers are free to ignore forced breaks within those elements if they choose.

Attributes on mo and possibly on mspace elements control linebreaking and indentation of the following line.
The aspects of linebreaking that can be controlled are:

• Where — attributes determine the desirability of a linebreak at a specific operator or space, in particular •
whether a break is required or inhibited. These can only be set on mo and mspace elements. (See Section
3.2.5.2.2 Linebreaking attributes.)

• Operator Display/Position — when a linebreak occurs, determines whether the operator will appear at the •
end of the line, at the beginning of the next line, or in both positions; and how much vertical space should
be added after the linebreak. These attributes can be set on mo elements or inherited from mstyle or math
elements. (See Section 3.2.5.2.2 Linebreaking attributes.)

• Indentation — determines the indentation of the line following a linebreak, including indenting so that the •
next line aligns with some point in a previous line. These attributes can be set on mo elements or inherited
from mstyle or math elements. (See Section 3.2.5.2.3 Indentation attributes.)

When a math element appears in an inline context, it may obey whatever paragraph flow rules are employed
by the document's text rendering engine. Such rules are necessarily outside of the scope of this specification.
Alternatively, it may use the value of the math element's overflow attribute. (See Section 2.2.1 Attributes.)

3.1 Introduction

35

3.1.7.2 Automatic Linebreaking Algorithm (Informative)

One method of linebreaking that works reasonably well is sometimes referred to as a "best-fit" algorithm. It
works by computing a "penalty" for each potential break point on a line. The break point with the smallest
penalty is chosen and the algorithm then works on the next line. Three useful factors in a penalty calculation are:

1. How much of the line width (after subtracting of the indent) is unused? The more unused, the higher the 1.
penalty.

2. How deeply nested is the breakpoint in the expression tree? The expression tree's depth is roughly similar 2.
to the nesting depth of mrows. The more deeply nested the break point, the higher the penalty.

3. Does a linebreak here make layout of the next line difficult? If the next line is not the last line and if 3.
the indentingstyle uses information about the linebreak point to determine how much to indent, then the
amount of room left for linebreaking on the next line must be considered; i.e., linebreaks that leave very
little room to draw the next line result in a higher penalty.

4. Whether "linebreak" has been specified: "nobreak" effectively sets the penalty to infinity, "badbreak" 4.
increases the penalty "goodbreak" decreases the penalty, and "newline" effectively sets the penalty to 0.

This algorithm takes time proportional to the number of token elements times the number of lines.

3.1.7.3 Linebreaking Algorithm for Inline Expressions (Informative)

A common method for breaking inline expressions that are too long for the space remaining on the current line is
to pick an appropriate break point for the expression and place the expression up to that point on the current line
and place the remainder of the expression on the following line. This can be done by:

1. Querying the text processing engine for the minimum and maximum amount of space available on the 1.
current line.

2. Using a variation of the automatic linebreaking algorithm given above), and/or using hints provided by 2.
linebreak attributes on mo or mspace elements, to choose a line break. The goal is that the first part of the
formula fits "comfortably" on the current line while breaking at a point that results in keeping related parts
of an expression on the same line.

3. The remainder of the formula begins on the next line, positioned both vertically and horizontally according 3.
to the paragraph flow; MathML's indentation attributes are ignored in this algorithm.

4. If the remainder does not fit on a line, steps 1 - 3 are repeated for the second and subsequent lines. 4.
Unlike the for the first line, some part of the expression must be placed these lines so that the algorithm
terminates.

3.1.8 Warning about fine-tuning of presentation

Some use-cases require precise control of the math layout and presentation. Several MathML elements and
attributes expressly support such fine-tuning of the rendering. However, MathML rendering agents exhibit wide
variability in their presentation of the same MathML expression due to difference in platforms, font availability,
and requirements particular to the agent itself (see Section 3.1 Introduction). The overuse of explicit rendering
control may yield a ‘perfect’ layout on one platform, but give much worse presentation on others. The following
sections clarify the kinds of problems that can occur.

3.1.8.1 Warning: non-portability of "tweaking"

For particular expressions, authors may be tempted to use the mpadded, mspace, mphantom, and mtext ele-
ments to improve ("tweak") the spacing generated by a specific renderer.

3 Presentation Markup

36

Without explicit spacing rules, various MathML renders may use different spacing algorithms. Consequently,
different MathML renderers may position symbols in different locations relative to each other. Say that renderer
B, for example, provides improved spacing for a particular expression over renderer A. Authors are strongly
warned that "tweaking" the layout for renderer A may produce very poor results in renderer B, very likely worse
than without any explicit adjustment at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive
versions, so that the effect of tweaking in a given MathML document may grow worse with time. Also, when
style sheet mechanisms are extended to MathML, even one version of a renderer may use different spacing rules
for users with different style sheets.

Therefore, it is suggested that MathML markup never use mpadded or mspace elements to tweak the rendering
of specific expressions, unless the MathML is generated solely to be viewed using one specific version of one
MathML renderer, using one specific style sheet (if style sheets are available in that renderer).

In cases where the temptation to improve spacing proves too strong, careful use of mpadded, mphantom, or
the alignment elements (Section 3.5.5 Alignment Markers <maligngroup/>, <malignmark/>) may give more
portable results than the direct insertion of extra space using mspace or mtext. Advice given to the implement-
ers of MathML renderers might be still more productive, in the long run.

3.1.8.2 Warning: spacing should not be used to convey meaning

MathML elements that permit "negative spacing", namely mspace, mpadded, and mo, could in theory be used
to simulate new notations or "overstruck" characters by the visual overlap of the renderings of more than one
MathML sub-expression.

This practice is strongly discouraged in all situations, for the following reasons:

• it will give different results in different MathML renderers (so the warning about "tweaking" applies), •
especially if attempts are made to render glyphs outside the bounding box of the MathML expression;

• it is likely to appear much worse than a more standard construct supported by good renderers;•

• such expressions are almost certain to be uninterpretable by audio renderers, computer algebra systems, •
text searches for standard symbols, or other processors of MathML input.

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply as an aid to
viewing expression structure, is discouraged. That is, the constructs that are discouraged are those that would be
interpreted differently by a human viewer of rendered MathML if all explicit spacing was removed.

Consider using the mglyph element for cases such as this. If such spacing constructs are used in spite of this
warning, they should be enclosed in a semantics element that also provides an additional MathML expression
that can be interpreted in a standard way. See Section 5.1 Annotation Framework for further discussion.

The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an
expression, with the exception of attributes on mi (such as mathvariant) used to distinguish one variable from
another.

3.1.9 Summary of Presentation Elements

3.1.9.1 Token Elements

mi identifier
mn number
mo operator, fence, or separator

3.1 Introduction

37

mtext text
mspace space
ms string literal

Additionally, the mglyph element may be used within Token elements to represent non-standard symbols as
images.

3.1.9.2 General Layout Schemata

mrow group any number of sub-expressions horizontally
mfrac form a fraction from two sub-expressions
msqrt form a square root (radical without an index)
mroot form a radical with specified index
mstyle style change
merror enclose a syntax error message from a preprocessor
mpadded adjust space around content
mphantom make content invisible but preserve its size
mfenced surround content with a pair of fences
menclose enclose content with a stretching symbol such as a long division sign.

3.1.9.3 Script and Limit Schemata

msub attach a subscript to a base
msup attach a superscript to a base
msubsup attach a subscript-superscript pair to a base
munder attach an underscript to a base
mover attach an overscript to a base
munderover attach an underscript-overscript pair to a base
mmultiscripts attach prescripts and tensor indices to a base

3.1.9.4 Tables and Matrices

mtable table or matrix
mlabeledtr row in a table or matrix with a label or equation number
mtr row in a table or matrix
mtd one entry in a table or matrix
maligngroup and malignmark alignment markers

3.1.9.5 Elementary Math Layout

mstack columns of aligned characters
mlongdiv similar to msgroup, with the addition of a divisor and result
msgroup a group of rows in an mstack that are shifted by similar amounts
msrow a row in an mstack
mscarries row in an mstack that whose contents represent carries or borrows
mscarry one entry in an mscarries
msline horizontal line inside of mstack

3 Presentation Markup

38

3.1.9.6 Enlivening Expressions

maction bind actions to a sub-expression

3.1.10 Mathematics style attributes common to presentation elements

In addition to the attributes listed in Section 2.1.6 Attributes Shared by all MathML Elements, all MathML
presentation elements accept the following two attributes:

Name values default

mathcolor color inherited
Specifies the foreground color to use when drawing the components of this element,
such as the content for token elements or any lines, surds, or other decorations. It
also establishes the default mathcolor used for child elements when used on a layout
element.

mathbackground color | "transparent" transparent
Specifies the background color to be used to fill in the bounding box of the element
and its children. The default, "transparent", lets the background color, if any, used in the
current rendering context to show through.

These style attributes are primarily intended for visual media. They are not expected to affect the intended
semantics of displayed expressions, but are for use in highlighting or drawing attention to the affected subexpres-
sions. For example, a red "x" is not assumed to be semantically different than a black "x", in contrast to variables
with different mathvariant (See Section 3.2.2 Mathematics style attributes common to token elements).

Since MathML expressions are often embedded in a textual data format such as HTML, the MathML renderer
should inherit the foreground color used in the context in which the MathML appears. Note, however, that
MathML doesn't specify the mechanism by which style information is inherited from the rendering environment.
See Section 3.2.2 Mathematics style attributes common to token elements for more details.

Note that the suggested MathML visual rendering rules do not define the precise extent of the region whose
background is affected by the mathbackground attribute, except that, when the content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this
region should lie behind all the drawing done to render the content, but should not lie behind any of the drawing
done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on
the extent of the region affected by the mathbackground attribute is not defined by these rules.

3.2 Token Elements

Token elements in presentation markup are broadly intended to represent the smallest units of mathematical
notation which carry meaning. Tokens are roughly analogous to words in text. However, because of the precise,
symbolic nature of mathematical notation, the various categories and properties of token elements figure promi-
nently in MathML markup. By contrast, in textual data, individual words rarely need to be marked up or styled
specially.

Frequently, tokens consist of a single character denoting a mathematical symbol. Other cases, e.g. function
names, involve multi-character tokens. Further, because traditional mathematical notation makes wide use of
symbols distinguished by their typographical properties (e.g. a Fraktur 'g' for a Lie algebra, or a bold 'x' for
a vector), care must be taken to insure that styling mechanisms respect typographical properties which carry
meaning. Consequently, characters, tokens, and typographical properties of symbols are closely related to one
another in MathML.

3.2 Token Elements

39

Token elements represent identifiers (mi), numbers (mn), operators (mo), text (mtext), strings (ms) and spacing
(mspace). The mglyph element may be used within token elements to represent non-standard symbols by
images. Preceding detailed discussion of the individual elements, the next two subsections discuss the allowable
content of token elements and the attributes common to them.

3.2.1 Token Element Content Characters, <mglyph/>

Character data in MathML markup is only allowed to occur as part of the content of token elements. Whitespace
between elements is ignored. With the exception of the empty mspace element, token elements can contain
any sequence of zero or more Unicode characters, or mglyph or malignmark elements. The mglyph element
is used to represent non-standard characters or symbols by images; the malignmark element establishes an
alignment point for use within table constructs, and is otherwise invisible (See Section 3.5.5 Alignment Markers
<maligngroup/>, <malignmark/>).

Characters can be either represented directly as Unicode character data, or indirectly via numeric or character
entity references. See Chapter 7 Characters, Entities and Fonts for a discussion of the advantages and disadvan-
tages of numeric character references versus entity references, and [Entities] for a full list of the entity names
available. Also, see Section 7.7 Anomalous Mathematical Characters for a discussion of the appropriate charac-
ter content to choose for certain applications.

Token elements (other than mspace) should be rendered as their content, if any, (i.e. in the visual case, as a
closely-spaced horizontal row of standard glyphs for the characters or images for the mglyphs in their content).
An mspace element is rendered as a blank space of a width determined by its attributes. Rendering algorithms
should also take into account the mathematics style attributes as described below, and modify surrounding
spacing by rules or attributes specific to each type of token element. The directional characteristics of the content
must also be respected (see Section 3.1.5.2 Bidirectional Layout in Token Elements).

3.2.1.1 Alphanumeric symbol characters

A large class of mathematical symbols are single letter identifiers typically used as variable names in formulas.
Different font variants of a letter are treated as separate symbols. For example, a Fraktur 'g' might denote a
Lie algebra, while a Roman 'g' denotes the corresponding Lie group. These letter-like symbols are traditionally
typeset differently than the same characters appearing in text, using different spacing and ligature conventions.
These characters must also be treated specially by style mechanisms, since arbitrary style transformations can
change meaning in an expression.

For these reasons, Unicode contains more than nine hundred Math Alphanumeric Symbol characters correspond-
ing to letter-like symbols. These characters are in the Secondary Multilingual Plane (SMP). See [Entities] for
more information. As valid Unicode data, these characters are permitted in MathML and, as tools and fonts for
them become widely available, we anticipate they will be the predominant way of denoting letter-like symbols.

MathML also provides an alternative encoding for these characters using only Basic Multilingual Plane (BMP)
characters together with markup. MathML defines a correspondence between token elements with certain combi-
nations of BMP character data and the mathvariant attribute and tokens containing SMP Math Alphanumeric
Symbol characters. Processing applications that accept SMP characters are required to treat the corresponding
BMP and attribute combinations identically. This is particularly important for applications that support searching
and/or equality testing.

The mathvariant attribute is described in more detail in Section 3.2.2 Mathematics style attributes common
to token elements, and a complete technical description of the corresponding characters is given in Section 7.5
Mathematical Alphanumeric Symbols.

3 Presentation Markup

40

3.2.1.2 Using images to represent symbols <mglyph/>

3.2.1.2.1 Description

The mglyph element provides a mechanism for displaying images to represent non-standard symbols. It may be
used within the content of the token elements mi, mn, mo, mtext or ms where existing Unicode characters are not
adequate.

Unicode defines a large number of characters used in mathematics and, in most cases, glyphs representing
these characters are widely available in a variety of fonts. Although these characters should meet almost all
users needs, MathML recognizes that mathematics is not static and that new characters and symbols are added
when convenient. Characters that become well accepted will likely be eventually incorporated by the Unicode
Consortium or other standards bodies, but that is often a lengthy process.

Note that the glyph's src attribute uniquely identifies the mglyph; two mglyphs with the same values for src
should be considered identical by applications that must determine whether two characters/glyphs are identical.

3.2.1.2.2 Attributes

The mglyph element accepts the attributes listed in Section 3.1.10 Mathematics style attributes common to
presentation elements, but note that mathcolor has no effect. The background color, mathbackground, should
show through if the specified image has transparency.

mglyph also accepts the additional attributes listed here.

Name values default

src URI required
Specifies the location of the image resource; it may be a URI relative to the base-URI of the
source of the MathML, if any.

width length from image
Specifies the desired width of the glyph; see height.

height length from image
Specifies the desired height of the glyph. If only one of width and height are given, the image
should be scaled to preserve the aspect ratio; if neither are given, the image should be displayed at
its natural size.

valign length 0ex
Specifies the baseline alignment point of the image with respect to the current baseline. A positive
value shifts the bottom of the image above the current baseline while a negative value lowers it. A
value of 0 (the default) means that the baseline of the image is at the bottom of the image.

alt string required
Provides an alternate name for the glyph. If the specified image can't be found or displayed, the
renderer may use this name in a warning message or some unknown glyph notation. The name
might also be used by an audio renderer or symbol processing system and should be chosen to be
descriptive.

Note that the src and alt attributes are required for correct usage in MathML 3, however this is not enforced by
the schema due to the deprecated usage described below.

3.2 Token Elements

41

3.2.1.2.3 Example

The following example illustrates how a researcher might use the mglyph construct with a set of images to work
with braid group notation.

<mrow>
 <mi><mglyph src="my-braid-23" alt="2 3 braid"/></mi>
 <mo>+</mo>
 <mi><mglyph src="my-braid-132" alt="1 3 2 braid"/></mi>
 <mo>=</mo>
 <mi><mglyph src="my-braid-13" alt="1 3 braid"/></mi>
</mrow>

This might render as:

+ =
3.2.1.2.4 Deprecated Attributes

Originally, mglyph was designed to provide access to non-standard fonts. Since this functionality was seldom
implemented, nor were downloadable web fonts widely available, this use of mglyph has been deprecated. For
reference, the following attributes were previously defined:

Name values

fontfamily string
the name of a font that may be available to a MathML renderer, or a CSS font specification;
See Section 6.5 Using CSS with MathML and CSS [CSS21] for more information.

index integer
Specified a position of the desired glyph within the font named by the fontfamily attribute
(see Section 3.2.2.1 Deprecated style attributes on token elements).

In MathML 1 and 2, both were required attributes; they are now optional and should be ignored unless the src
attribute is missing.

Additionally, in MathML 2, mglyph accepted the attributes described in Section 3.2.2 Mathematics style attrib-
utes common to token elements (mathvariant and mathsize, along with the attributes deprecated there); to
make clear that mglyph is not a token element, and since these attributes have no effect in any case, these
attributes have been deprecated.

3.2.2 Mathematics style attributes common to token elements

In addition to the attributes defined for all presentation elements (Section 3.1.10 Mathematics style attributes
common to presentation elements), MathML includes two mathematics style attributes as well as a directionality
attribute valid on all presentation token elements, as well as the math and mstyle elements; dir is also valid on
mrow elements. The attributes are:

Name values default

mathvariant "normal" | "bold" | "italic" | "bold-italic"
| "double-struck" | "bold-fraktur" | "script"
| "bold-script" | "fraktur" | "sans-serif"
| "bold-sans-serif" | "sans-serif-italic" |

normal (except on <mi>)

3 Presentation Markup

42

Name values default

"sans-serif-bold-italic" | "monospace" | "initial" |
"tailed" | "looped" | "stretched"
Specifies the logical class of the token. Note that this class is more than styling, it typically
conveys semantic intent; see the discussion below.

mathsize "small" | "normal" | "big" | length inherited
Specifies the size to display the token content. The values "small" and "big" choose a size
smaller or larger than the current font size, but leave the exact proportions unspecified;
"normal" is allowed for completeness, but since it is equivalent to "100%" or "1em", it has
no effect.

dir "ltr" | "rtl" inherited
specifies the initial directionality for text within the token: ltr (Left To Right) or rtl
(Right To Left). This attribute should only be needed in rare cases involving weak or
neutral characters; see Section 3.1.5.1 Overall Directionality of Mathematics Formulas for
further discussion. It has no effect on mspace.

The mathvariant attribute defines logical classes of token elements. Each class provides a collection of
typographically-related symbolic tokens. Each token has a specific meaning within a given mathematical expres-
sion and, therefore, needs to be visually distinguished and protected from inadvertent document-wide style
changes which might change its meaning. Each token is identified by the combination of the mathvariant
attribute value and the character data in the token element.

When MathML rendering takes place in an environment where CSS is available, the mathematics style attributes
can be viewed as predefined selectors for CSS style rules. See Section 6.5 Using CSS with MathML for discus-
sion of the interaction of MathML and CSS. Also, see [MathMLforCSS] for discussion of rendering MathML by
CSS and a sample CSS style sheet. When CSS is not available, it is up to the internal style mechanism of the
rendering application to visually distinguish the different logical classes. Most MathML renderers will probably
want to rely on some degree to additional, internal style processing algorithms. In particular, the mathvariant
attribute does not follow the CSS inheritance model; the default value is "normal" (non-slanted) for all tokens
except for mi with single-character content. See Section 3.2.3 Identifier <mi> for details.

Renderers have complete freedom in mapping mathematics style attributes to specific rendering properties. How-
ever, in practice, the mathematics style attribute names and values suggest obvious typographical properties, and
renderers should attempt to respect these natural interpretations as far as possible. For example, it is reasonable
to render a token with the mathvariant attribute set to "sans-serif" in Helvetica or Arial. However, rendering
the token in a Times Roman font could be seriously misleading and should be avoided.

In principle, any mathvariant value may be used with any character data to define a specific symbolic token.
In practice, only certain combinations of character data and mathvariant values will be visually distinguished
by a given renderer. For example, there is no clear-cut rendering for a "fraktur alpha" or a "bold italic Kanji"
character, and the mathvariant values "initial", "tailed", "looped", and "stretched" are appropriate only for
Arabic characters.

Certain combinations of character data and mathvariant values are equivalent to assigned Unicode code
points that encode mathematical alphanumeric symbols. These Unicode code points are the ones in the Arabic
Mathematical Alphabetic Symbols block U+1EE00 to U+1EEFF, Mathematical Alphanumeric Symbols block
U+1D400 to U+1D7FF, listed in the Unicode standard, and the ones in the Letterlike Symbols range U+2100
to U+214F that represent "holes" in the alphabets in the SMP, listed in Section 7.5 Mathematical Alphanumeric
Symbols. These characters are described in detail in section 2.2 of UTR #25. The description of each such
character in the Unicode standard provides an unstyled character to which it would be equivalent except for a
font change that corresponds to a mathvariant value. A token element that uses the unstyled character in com-
bination with the corresponding mathvariant value is equivalent to a token element that uses the mathematical

3.2 Token Elements

43

http://www.unicode.org/charts/PDF/U1EE00.pdf
http://www.unicode.org/charts/PDF/U1D400.pdf
http://www.unicode.org/charts/PDF/U2100.pdf
http://www.unicode.org/reports/tr25/

alphanumeric symbol character without the mathvariant attribute. Note that the appearance of a mathematical
alphanumeric symbol character should not be altered by surrounding mathvariant or other style declarations.

Renderers should support those combinations of character data and mathvariant values that correspond to
Unicode characters, and that they can visually distinguish using available font characters. Renderers may ignore
or support those combinations of character data and mathvariant values that do not correspond to an assigned
Unicode code point, and authors should recognize that support for mathematical symbols that do not correspond
to assigned Unicode code points may vary widely from one renderer to another.

Since MathML expressions are often embedded in a textual data format such as XHTML, the surrounding text
and the MathML must share rendering attributes such as font size, so that the renderings will be compatible in
style. For this reason, most attribute values affecting text rendering are inherited from the rendering environment,
as shown in the "default" column in the table above. (In cases where the surrounding text and the MathML
are being rendered by separate software, e.g. a browser and a plug-in, it is also important for the rendering
environment to provide the MathML renderer with additional information, such as the baseline position of
surrounding text, which is not specified by any MathML attributes.) Note, however, that MathML doesn't specify
the mechanism by which style information is inherited from the rendering environment.

If the requested mathsize of the current font is not available, the renderer should approximate it in the manner
likely to lead to the most intelligible, highest quality rendering. Note that many MathML elements automatically
change the font size in some of their children; see the discussion in Section 3.1.6 Displaystyle and Scriptlevel.

3.2.2.1 Deprecated style attributes on token elements

The MathML 1.01 style attributes listed below are deprecated in MathML 2 and 3. These attributes were aligned
to CSS but, in rendering environments that support CSS, it is preferable to use CSS directly to control the ren-
dering properties corresponding to these attributes, rather than the attributes themselves. However as explained
above, direct manipulation of these rendering properties by whatever means should usually be avoided. As a
general rule, whenever there is a conflict between these deprecated attributes and the corresponding attributes
(Section 3.2.2 Mathematics style attributes common to token elements), the former attributes should be ignored.

The deprecated attributes are:

Name values default

fontfamily string inherited
Should be the name of a font that may be available to a MathML renderer, or a CSS font
specification; See Section 6.5 Using CSS with MathML and CSS [CSS21] for more informa-
tion. Deprecated in favor of mathvariant.

fontweight "normal" | "bold" inherited
Specified the font weight for the token. Deprecated in favor of mathvariant.

fontstyle "normal" | "italic" normal (except on <mi>)
Specified the font style to use for the token. Deprecated in favor of mathvariant.

fontsize length inherited
Specified the size for the token. Deprecated in favor of mathsize.

color color inherited
Specified the color for the token. Deprecated in favor of mathcolor.

background color | "transparent" transparent
Specified the background color to be used to fill in the bounding box of the element and its
children. Deprecated in favor of mathbackground.

3 Presentation Markup

44

3.2.2.2 Embedding HTML in MathML

MathML can be combined with other formats as described in Section 6.4 Combining MathML and Other
Formats. The recommendation is to embed other formats in MathML by extending the MathML schema to allow
additional elements to be children of the mtext element or other leaf elements as appropriate to the role they
serve in the expression (see Section 3.2.6.4 Mixing text and mathematics). The directionality, font size, and other
font attributes should inherit from those that would be used for characters of the containing leaf element (see
Section 3.2.2 Mathematics style attributes common to token elements).

Here is an example of embedding SVG inside of mtext in an HTML context:

<mtable>
 <mtr>
 <mtd>
 <mtext><input type="text" placeholder="what shape is this?"/></mtext>
 </mtd>
 </mtr>
 <mtr>
 <mtd>
 <mtext>
 <svg xmlns="http://www.w3.org/2000/svg"
 width="4cm" height="4cm" viewBox="0 0 400 400">
 <rect x="1" y="1" width="398" height="398"
 style="fill:none; stroke:blue"/>
 <path d="M 100 100 L 300 100 L 200 300 z"
 style="fill:red; stroke:blue; stroke-width:3"/>
 </svg>
 </mtext>
 </mtd>
 </mtr>
</mtable>

3.2.3 Identifier <mi>

3.2.3.1 Description

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier. Identifiers
can include variables, function names, and symbolic constants. A typical graphical renderer would render an mi
element as its content (See Section 3.2.1 Token Element Content Characters, <mglyph/>), with no extra spacing
around it (except spacing associated with neighboring elements).

Not all "mathematical identifiers" are represented by mi elements — for example, subscripted or primed varia-
bles should be represented using msub or msup respectively. Conversely, arbitrary text playing the role of a
"term" (such as an ellipsis in a summed series) can be represented using an mi element, as shown in an example
in Section 3.2.6.4 Mixing text and mathematics.

It should be stressed that mi is a presentation element, and as such, it only indicates that its content should be
rendered as an identifier. In the majority of cases, the contents of an mi will actually represent a mathematical
identifier such as a variable or function name. However, as the preceding paragraph indicates, the correspond-
ence between notations that should render as identifiers and notations that are actually intended to represent
mathematical identifiers is not perfect. For an element whose semantics is guaranteed to be that of an identifier,
see the description of ci in Chapter 4 Content Markup.

3.2 Token Elements

45

3.2.3.2 Attributes

mi elements accept the attributes listed in Section 3.2.2 Mathematics style attributes common to token elements,
but in one case with a different default value:

Name values default

mathvariant "normal" | "bold" | "italic" | "bold-italic" | "double-struck"
| "bold-fraktur" | "script" | "bold-script" | "fraktur"
| "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |
"sans-serif-bold-italic" | "monospace" | "initial" | "tailed"
| "looped" | "stretched"

(depends on content;
described below)

Specifies the logical class of the token. The default is "normal" (non-slanted) unless the
content is a single character, in which case it would be "italic".

Note that the deprecated fontstyle attribute defaults in the same way as mathvariant, depending on the
content.

Note that for purposes of determining equivalences of Math Alphanumeric Symbol characters (See Section 7.5
Mathematical Alphanumeric Symbols and Section 3.2.1.1 Alphanumeric symbol characters) the value of the
mathvariant attribute should be resolved first, including the special defaulting behavior described above.

3.2.3.3 Examples

<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi mathvariant='script'> L </mi>
<mi></mi>

An mi element with no content is allowed; <mi></mi> might, for example, be used by an "expression editor"
to represent a location in a MathML expression which requires a "term" (according to conventional syntax for
mathematics) but does not yet contain one.

Identifiers include function names such as "sin". Expressions such as "sin x" should be written using the char-
acter U+2061 (which also has the entity names ⁡ and ⁡) as shown below; see also the
discussion of invisible operators in Section 3.2.5 Operator, Fence, Separator or Accent <mo>.

<mrow>
 <mi> sin </mi>
 <mo> ⁡<!--FUNCTION APPLICATION--> </mo>
 <mi> x </mi>
</mrow>

Miscellaneous text that should be treated as a "term" can also be represented by an mi element, as in:

<mrow>
 <mn> 1 </mn>
 <mo> + </mo>
 <mi> …<!--HORIZONTAL ELLIPSIS--> </mi>
 <mo> + </mo>
 <mi> n </mi>
</mrow>

3 Presentation Markup

46

When an mi is used in such exceptional situations, explicitly setting the mathvariant attribute may give better
results than the default behavior of some renderers.

The names of symbolic constants should be represented as mi elements:

<mi> π<!--GREEK SMALL LETTER PI--> </mi>
<mi> ⅈ<!--DOUBLE-STRUCK ITALIC SMALL I--> </mi>
<mi> ⅇ<!--DOUBLE-STRUCK ITALIC SMALL E--> </mi>

3.2.4 Number <mn>

3.2.4.1 Description

An mn element represents a "numeric literal" or other data that should be rendered as a numeric literal. Generally
speaking, a numeric literal is a sequence of digits, perhaps including a decimal point, representing an unsigned
integer or real number. A typical graphical renderer would render an mn element as its content (See Section
3.2.1 Token Element Content Characters, <mglyph/>), with no extra spacing around them (except spacing from
neighboring elements such as mo). mn elements are typically rendered in an unslanted font.

The mathematical concept of a "number" can be quite subtle and involved, depending on the context. As a
consequence, not all mathematical numbers should be represented using mn; examples of mathematical numbers
that should be represented differently are shown below, and include complex numbers, ratios of numbers shown
as fractions, and names of numeric constants.

Conversely, since mn is a presentation element, there are a few situations where it may be desirable to include
arbitrary text in the content of an mn that should merely render as a numeric literal, even though that content
may not be unambiguously interpretable as a number according to any particular standard encoding of numbers
as character sequences. As a general rule, however, the mn element should be reserved for situations where its
content is actually intended to represent a numeric quantity in some fashion. For an element whose semantics are
guaranteed to be that of a particular kind of mathematical number, see the description of cn in Chapter 4 Content
Markup.

3.2.4.2 Attributes

mn elements accept the attributes listed in Section 3.2.2 Mathematics style attributes common to token elements.

3.2.4.3 Examples

<mn> 2 </mn>
<mn> 0.123 </mn>
<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> 0xFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.4.4 Numbers that should not be written using <mn> alone

Many mathematical numbers should be represented using presentation elements other than mn alone; this
includes complex numbers, ratios of numbers shown as fractions, and names of numeric constants. Examples of
MathML representations of such numbers include:

<mrow>
 <mn> 2 </mn>

3.2 Token Elements

47

 <mo> + </mo>
 <mrow>
 <mn> 3 </mn>
 <mo> ⁢<!--INVISIBLE TIMES--> </mo>
 <mi> ⅈ<!--DOUBLE-STRUCK ITALIC SMALL I--> </mi>
 </mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π<!--GREEK SMALL LETTER PI--> </mi>
<mi> ⅇ<!--DOUBLE-STRUCK ITALIC SMALL E--> </mi>

3.2.5 Operator, Fence, Separator or Accent <mo>

3.2.5.1 Description

An mo element represents an operator or anything that should be rendered as an operator. In general, the
notational conventions for mathematical operators are quite complicated, and therefore MathML provides a
relatively sophisticated mechanism for specifying the rendering behavior of an mo element. As a consequence,
in MathML the list of things that should "render as an operator" includes a number of notations that are not
mathematical operators in the ordinary sense. Besides ordinary operators with infix, prefix, or postfix forms,
these include fence characters such as braces, parentheses, and "absolute value" bars; separators such as comma
and semicolon; and mathematical accents such as a bar or tilde over a symbol. We will use the term "operator" in
this chapter to refer to operators in this broad sense.

Typical graphical renderers show all mo elements as the content (See Section 3.2.1 Token Element Content
Characters, <mglyph/>), with additional spacing around the element determined by its attributes and further
described below. Renderers without access to complete fonts for the MathML character set may choose to render
an mo element as not precisely the characters in its content in some cases. For example, <mo> ≤ </mo>
might be rendered as <= to a terminal. However, as a general rule, renderers should attempt to render the content
of an mo element as literally as possible. That is, <mo> ≤ </mo> and <mo> <= </mo> should render
differently. The first one should render as a single character representing a less-than-or-equal-to sign, and the
second one as the two-character sequence <=.

All operators, in the general sense used here, are subject to essentially the same rendering attributes and rules.
Subtle distinctions in the rendering of these classes of symbols, when they exist, are supported using the Boolean
attributes fence, separator and accent, which can be used to distinguish these cases.

A key feature of the mo element is that its default attribute values are set on a case-by-case basis from an
"operator dictionary" as explained below. In particular, default values for fence, separator and accent can
usually be found in the operator dictionary and therefore need not be specified on each mo element.

Note that some mathematical operators are represented not by mo elements alone, but by mo elements "embel-
lished" with (for example) surrounding superscripts; this is further described below. Conversely, as presentation
elements, mo elements can contain arbitrary text, even when that text has no standard interpretation as an
operator; for an example, see the discussion "Mixing text and mathematics" in Section 3.2.6 Text <mtext>. See
also Chapter 4 Content Markup for definitions of MathML content elements that are guaranteed to have the
semantics of specific mathematical operators.

Note also that linebreaking, as discussed in Section 3.1.7 Linebreaking of Expressions, usually takes place at
operators (either before or after, depending on local conventions). Thus, mo accepts attributes to encode the
desirability of breaking at a particular operator, as well as attributes describing the treatment of the operator and
indentation in case the a linebreak is made at that operator.

3 Presentation Markup

48

3.2.5.2 Attributes

mo elements accept the attributes listed in Section 3.2.2 Mathematics style attributes common to token elements
and the additional attributes listed here. Since the display of operators is so critical in mathematics, the mo
element accepts a large number of attributes; these are described in the next three subsections.

Most attributes get their default values from an enclosing mstyle element, math element, from the containing
document, or from the Section 3.2.5.7.1 The operator dictionary. When a value that is listed as "inherited" is not
explicitly given on an mo, mstyle element, math element, or found in the operator dictionary for a given mo
element, the default value shown in parentheses is used.

3.2.5.2.1 Dictionary-based attributes

Name values default

form "prefix" | "infix" | "postfix" set by position of operator in an mrow
Specifies the role of the operator in the enclosing expression. This role and the operator
content affect the lookup of the operator in the operator dictionary which affects the
spacing and other default properties; see Section 3.2.5.7.2 Default value of the form
attribute.

fence "true" | "false" set by dictionary (false)
Specifies whether the operator represents a ‘fence’, such as a parenthesis. This attribute
generally has no direct effect on the visual rendering, but may be useful in specific cases,
such as non-visual renderers.

separator "true" | "false" set by dictionary (false)
Specifies whether the operator represents a ‘separator’, or punctuation. This attribute
generally has no direct effect on the visual rendering, but may be useful in specific cases,
such as non-visual renderers.

lspace length set by dictionary (thickmathspace)
Specifies the leading space appearing before the operator; see Section 3.2.5.7.5 Spacing
around an operator. (Note that before is on the right in a RTL context; see Section 3.1.5
Directionality).

rspace length set by dictionary (thickmathspace)
Specifies the trailing space appearing after the operator; see Section 3.2.5.7.5 Spacing
around an operator. (Note that after is on the left in a RTL context; see Section 3.1.5
Directionality).

stretchy "true" | "false" set by dictionary (false)
Specifies whether the operator should stretch to the size of adjacent material; see Section
3.2.5.8 Stretching of operators, fences and accents.

symmetric "true" | "false" set by dictionary (false)
Specifies whether the operator should be kept symmetric around the math axis when
stretchy. Note this property only applies to vertically stretched symbols. See Section
3.2.5.8 Stretching of operators, fences and accents.

maxsize length | "infinity" set by dictionary (infinity)
Specifies the maximum size of the operator when stretchy; see Section 3.2.5.8 Stretching
of operators, fences and accents. Unitless or percentage values indicate a multiple of the
reference size, being the size of the unstretched glyph.

3.2 Token Elements

49

Name values default

minsize length set by dictionary (100%)
Specifies the minimum size of the operator when stretchy; see Section 3.2.5.8 Stretching
of operators, fences and accents. Unitless or percentage values indicate a multiple of the
reference size, being the size of the unstretched glyph.

largeop "true" | "false" set by dictionary (false)
Specifies whether the operator is considered a ‘large’ operator, that is, whether it should
be drawn larger than normal when displaystyle="true" (similar to using TEX's
\displaystyle). Examples of large operators include ∫ and ∏. See Section
3.1.6 Displaystyle and Scriptlevel for more discussion.

movablelimits "true" | "false" set by dictionary (false)
Specifies whether under- and overscripts attached to this operator ‘move’ to the more
compact sub- and superscript positions when displaystyle is false. Examples of
operators that typically have movablelimits="true" are ∑, ∏, and lim. See
Section 3.1.6 Displaystyle and Scriptlevel for more discussion.

accent "true" | "false" set by dictionary (false)
Specifies whether this operator should be treated as an accent (diacritical mark) when
used as an underscript or overscript; see munder, mover and munderover.

3.2.5.2.2 Linebreaking attributes

The following attributes affect when a linebreak does or does not occur, and the appearance of the linebreak
when it does occur.

Name values default

linebreak "auto" | "newline" | "nobreak" |
"goodbreak" | "badbreak"

auto

Specifies the desirability of a linebreak occurring at this operator: the default "auto"
indicates the renderer should use its default linebreaking algorithm to determine
whether to break; "newline" is used to force a linebreak; For automatic linebreak-
ing, "nobreak" forbids a break; "goodbreak" suggests a good position; "badbreak"
suggests a poor position.

lineleading length inherited (100%)
Specifies the amount of vertical space to use after a linebreak. For tall lines, it is
often clearer to use more leading at linebreaks. Rendering agents are free to choose
an appropriate default.

linebreakstyle "before" | "after" | "duplicate" |
"infixlinebreakstyle"

set by dictionary (before)

Specifies whether a linebreak occurs ‘before’ or ‘after’ the operator when a line-
breaks occur on this operator; or whether the operator is duplicated. "before" causes
the operator to appears at the beginning of the new line (but possibly indented);
"after" causes it to appear at the end of the line before the break. "duplicate" places
the operator at both positions. "infixlinebreakstyle" uses the value that has been
specified for infix operators; This value (one of "before", "after" or "duplicate") can
be specified by the application or bound by mstyle ("before" corresponds to the
most common style of linebreaking).

3 Presentation Markup

50

Name values default

linebreakmultchar string inherited (⁢)
Specifies the character used to make an ⁢ operator visible at a
linebreak. For example, linebreakmultchar="·" would make the multi-
plication visible as a center dot.

linebreak values on adjacent mo and mspaceelements do not interact; linebreak="nobreak" on a mo does
not, in itself, inhibit a break on a preceding or following (possibly nested) mo or mspace element and does not
interact with the linebreakstyle attribute value of the preceding or following mo element. It does prevent
breaks from occurring on either side of the mo element in all other situations.

3.2.5.2.3 Indentation attributes

The following attributes affect indentation of the lines making up a formula. Primarily these attributes control
the positioning of new lines following a linebreak, whether automatic or manual. However, indentalignfirst
and indentshiftfirst also control the positioning of single line formula without any linebreaks. When these
attributes appear on mo or mspace they apply if a linebreak occurs at that element. When they appear on mstyle
or math elements, they determine defaults for the style to be used for any linebreaks occurring within. Note
that except for cases where heavily marked-up manual linebreaking is desired, many of these attributes are most
useful when bound on an mstyle or math element.

Note that since the rendering context, such as the available width and current font, is not always available to the
author of the MathML, a render may ignore the values of these attributes if they result in a line in which the
remaining width is too small to usefully display the expression or if they result in a line in which the remaining
width exceeds the available linewrapping width.

Name values default

indentalign "left" | "center" | "right" | "auto" | "id" inherited (auto)
Specifies the positioning of lines when linebreaking takes place within an mrow; see
below for discussion of the attribute values.

indentshift length inherited (0)
Specifies an additional indentation offset relative to the position determined by
indentalign. When the value is a percentage value or number without unit, the
value is relative to the horizontal space that a MathML renderer has available, this
is the current target width as used for linebreaking as specified in Section 3.1.7
Linebreaking of Expressions

indenttarget idref inherited (none)
Specifies the id of another element whose horizontal position determines the position
of indented lines when indentalign="id". Note that the identified element may
be outside of the current math element, allowing for inter-expression alignment, or
may be within invisible content such as mphantom; it must appear before being
referenced, however. This may lead to an id being unavailable to a given renderer
or in a position that does not allow for alignment. In such cases, the indentalign
should revert to "auto".

indentalignfirst "left" | "center" | "right" | "auto" | "id" |
"indentalign"

inherited (indentalign)

Specifies the indentation style to use for the first line of a formula; the value "inden-
talign" (the default) means to indent the same way as used for the general line.

3.2 Token Elements

51

Name values default

indentshiftfirst length | "indentshift" inherited (indentshift)
Specifies the offset to use for the first line of a formula; the value "indentshift" (the
default) means to use the same offset as used for the general line. Percentage values
and numbers without unit are interpreted as described for indentshift

indentalignlast "left" | "center" | "right" | "auto" | "id" |
"indentalign"

inherited (indentalign)

Specifies the indentation style to use for the last line when a linebreak occurs within
a given mrow; the value "indentalign" (the default) means to indent the same way as
used for the general line. When there are exactly two lines, the value of this attribute
should be used for the second line in preference to indentalign.

indentshiftlast length | "indentshift" inherited (indentshift)
Specifies the offset to use for the last line when a linebreak occurs within a given
mrow; the value "indentshift" (the default) means to indent the same way as used for
the general line. When there are exactly two lines, the value of this attribute should
be used for the second line in preference to indentshift. Percentage values and
numbers without unit are interpreted as described for indentshift

The legal values of indentalign are:

Value Meaning

left Align the left side of the next line to the left side of the line wrapping width
center Align the center of the next line to the center of the line wrapping width
right Align the right side of the next line to the right side of the line wrapping width
auto (default) indent using the renderer's default indenting style; this may be a fixed amount or one that

varies with the depth of the element in the mrow nesting or some other similar method.
id Align the left side of the next line to the left side of the element referenced by the idref (given by

indenttarget); if no such element exists, use "auto" as the indentalign value

3.2.5.3 Examples with ordinary operators

<mo> + </mo>

<mo> < </mo>

<mo> ≤<!--LESS-THAN OR EQUAL TO--> </mo>

<mo> <= </mo>

<mo> ++ </mo>

<mo> ∑<!--N-ARY SUMMATION--> </mo>

<mo> .NOT. </mo>

<mo> and </mo>

<mo> ⁢<!--INVISIBLE TIMES--> </mo>

<mo mathvariant='bold'> + </mo>

3 Presentation Markup

52

3.2.5.4 Examples with fences and separators

Note that the mo elements in these examples don't need explicit fence or separator attributes, since these can
be found using the operator dictionary as described below. Some of these examples could also be encoded using
the mfenced element described in Section 3.3.8 Expression Inside Pair of Fences <mfenced>.

a + b
<mrow>
 <mo> (</mo>
 <mrow>
 <mi> a </mi>
 <mo> + </mo>
 <mi> b </mi>
 </mrow>
 <mo>) </mo>
</mrow>

0, 1
<mrow>
 <mo> [</mo>
 <mrow>
 <mn> 0 </mn>
 <mo> , </mo>
 <mn> 1 </mn>
 </mrow>
 <mo>) </mo>
</mrow>

f x, y
<mrow>
 <mi> f </mi>
 <mo> ⁡<!--FUNCTION APPLICATION--> </mo>
 <mrow>
 <mo> (</mo>
 <mrow>
 <mi> x </mi>
 <mo> , </mo>
 <mi> y </mi>
 </mrow>
 <mo>) </mo>
 </mrow>
</mrow>

3.2.5.5 Invisible operators

Certain operators that are "invisible" in traditional mathematical notation should be represented using specific
entity references within mo elements, rather than simply by nothing. The characters used for these "invisible
operators" are:

Character Entity name Short name Examples of use

U+2061 ⁡ ⁡ f x sin x
U+2062 ⁢ ⁢ xy

3.2 Token Elements

53

Character Entity name Short name Examples of use

U+2063 ⁣ ⁣ m12
U+2064 2 34

The MathML representations of the examples in the above table are:

<mrow>
 <mi> f </mi>
 <mo> ⁡<!--FUNCTION APPLICATION--> </mo>
 <mrow>
 <mo> (</mo>
 <mi> x </mi>
 <mo>) </mo>
 </mrow>
</mrow>

<mrow>
 <mi> sin </mi>
 <mo> ⁡<!--FUNCTION APPLICATION--> </mo>
 <mi> x </mi>
</mrow>

<mrow>
 <mi> x </mi>
 <mo> ⁢<!--INVISIBLE TIMES--> </mo>
 <mi> y </mi>
</mrow>

<msub>
 <mi> m </mi>
 <mrow>
 <mn> 1 </mn>
 <mo> ⁣<!--INVISIBLE SEPARATOR--> </mo>
 <mn> 2 </mn>
 </mrow>
</msub>

<mrow>
 <mn> 2 </mn>
 <mo> ⁤<!--INVISIBLE PLUS--> </mo>
 <mfrac>
 <mn> 3 </mn>
 <mn> 4 </mn>
 </mfrac>
</mrow>

The reasons for using specific mo elements for invisible operators include:

• such operators should often have specific effects on visual rendering (particularly spacing and linebreaking •
rules) that are not the same as either the lack of any operator, or spacing represented by mspace or mtext
elements;

• these operators should often have specific audio renderings different than that of the lack of any operator;•

• automatic semantic interpretation of MathML presentation elements is made easier by the explicit specifi-•
cation of such operators.

3 Presentation Markup

54

For example, an audio renderer might render f x (represented as in the above examples) by speaking "f of x",
but use the word "times" in its rendering of xy. Although its rendering must still be different depending on the
structure of neighboring elements (sometimes leaving out "of" or "times" entirely), its task is made much easier
by the use of a different mo element for each invisible operator.

3.2.5.6 Names for other special operators

MathML also includes ⅆ (U+2146) for use in an mo element representing the differential
operator symbol usually denoted by "d". The reasons for explicitly using this special character are similar to
those for using the special characters for invisible operators described in the preceding section.

3.2.5.7 Detailed rendering rules for <mo> elements

Typical visual rendering behaviors for mo elements are more complex than for the other MathML token ele-
ments, so the rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore,
no attempt is made to specify the rendering completely; rather, enough information is given to make the intended
effect of the various rendering attributes as clear as possible.

3.2.5.7.1 The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established,
predictable, traditional notational usage. Typically, this usage amounts to certain default attribute values for mo
elements with specific contents and a specific form attribute. Since these defaults vary from symbol to symbol,
MathML anticipates that renderers will have an "operator dictionary" of default attributes for mo elements (see
Appendix C Operator Dictionary) indexed by each mo element's content and form attribute. If an mo element is
not listed in the dictionary, the default values shown in parentheses in the table of attributes for mo should be
used, since these values are typically acceptable for a generic operator.

Some operators are "overloaded", in the sense that they can occur in more than one form (prefix, infix, or
postfix), with possibly different rendering properties for each form. For example, "+" can be either a prefix or an
infix operator. Typically, a visual renderer would add space around both sides of an infix operator, while only in
front of a prefix operator. The form attribute allows specification of which form to use, in case more than one
form is possible according to the operator dictionary and the default value described below is not suitable.

3.2.5.7.2 Default value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for
inferring the value of the form attribute from the context. If it is not specified, and there is more than one
possible form in the dictionary for an mo element with given content, the renderer should choose which form to
use as follows (but see the exception for embellished operators, described later):

• If the operator is the first argument in an mrow with more than one argument (ignoring all space-like •
arguments (see Section 3.2.7 Space <mspace/>) in the determination of both the length and the first
argument), the prefix form is used;

• if it is the last argument in an mrow with more than one argument (ignoring all space-like arguments), the •
postfix form is used;

• if it is the only element in an implicit or explicit mrow and if it is in a script position of one of the elements •
listed in Section 3.4 Script and Limit Schemata, the postfix form is used;

• in all other cases, including when the operator is not part of an mrow, the infix form is used.•

3.2 Token Elements

55

Note that the mrow discussed above may be inferred; See Section 3.1.3.1 Inferred <mrow>s.

Opening fences should have form="prefix", and closing fences should have form="postfix"; separators are
usually "infix", but not always, depending on their surroundings. As with ordinary operators, these values do not
usually need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms
that is available there, in the order of preference: infix, postfix, prefix; if no forms are available for the given mo
element content, the renderer should use the defaults given in parentheses in the table of attributes for mo.

3.2.5.7.3 Exception for embellished operators

There is one exception to the above rules for choosing an mo element's default form attribute. An mo element
that is "embellished" by one or more nested subscripts, superscripts, surrounding text or whitespace, or style
changes behaves differently. It is the embellished operator as a whole (this is defined precisely, below) whose
position in an mrow is examined by the above rules and whose surrounding spacing is affected by its form, not
the mo element at its core; however, the attributes influencing this surrounding spacing are taken from the mo
element at the core (or from that element's dictionary entry).

For example, the "+4" in a +4 b should be considered an infix operator as a whole, due to its position in the
middle of an mrow, but its rendering attributes should be taken from the mo element representing the "+", or
when those are not specified explicitly, from the operator dictionary entry for <mo form="infix"> + </mo>.
The precise definition of an "embellished operator" is:

• an mo element;•

• or one of the elements msub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac, •
or semantics (Section 5.1 Annotation Framework), whose first argument exists and is an embellished
operator;

• or one of the elements mstyle, mphantom, or mpadded, such that an mrow containing the same argu-•
ments would be an embellished operator;

• or an maction element whose selected sub-expression exists and is an embellished operator;•

• or an mrow whose arguments consist (in any order) of one embellished operator and zero or more space-•
like elements.

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not
in the above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all
ordinary cases it will not be necessary for the author to specify a form attribute.

3.2.5.7.4 Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be
important for most users of MathML.

An mfrac is included as an "embellisher" because of the common notation for a differential operator:

<mfrac>
 <mo> ⅆ<!--DOUBLE-STRUCK ITALIC SMALL D--> </mo>
 <mrow>
 <mo> ⅆ<!--DOUBLE-STRUCK ITALIC SMALL D--> </mo>
 <mi> x </mi>

3 Presentation Markup

56

 </mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important
that it includes embellished fences as well as ordinary operators; thus it applies to any mo element.

Note that an mrow containing a single argument is an embellished operator if and only if its argument is an
embellished operator. This is because an mrow with a single argument must be equivalent in all respects to that
argument alone (as discussed in Section 3.3.1 Horizontally Group Sub-Expressions <mrow>). This means that an
mo element that is the sole argument of an mrow will determine its default form attribute based on that mrow's
position in a surrounding, perhaps inferred, mrow (if there is one), rather than based on its own position in the
mrow in which it is the sole argument.

Note that the above definition defines every mo element to be "embellished" — that is, "embellished operator"
can be considered (and implemented in renderers) as a special class of MathML expressions, of which mo is a
specific case.

3.2.5.7.5 Spacing around an operator

The amount of horizontal space added around an operator (or embellished operator), when it occurs in an
mrow, can be directly specified by the lspace and rspace attributes. Note that lspace and rspace should
be interpreted as leading and trailing space, in the case of RTL direction. By convention, operators that tend to
bind tightly to their arguments have smaller values for spacing than operators that tend to bind less tightly. This
convention should be followed in the operator dictionary included with a MathML renderer.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts,
as is done in TEX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analo-
gous ways for their rendering medium. For example, more space might translate into a longer pause in an audio
rendering.

3.2.5.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size
of other elements: stretchy, symmetric, maxsize, and minsize. If an operator has the attribute stretchy=
"true", then it (that is, each character in its content) obeys the stretching rules listed below, given the constraints
imposed by the fonts and font rendering system. In practice, typical renderers will only be able to stretch a small
set of characters, and quite possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific
character or operator; rather, when stretchy="true" it should be stretched in each direction for which stretching
is possible and reasonable for that character. It is up to the renderer to know in which directions it is reasonable
to stretch a character, if it can stretch the character. Most characters can be stretched in at most one direction by
typical renderers, but some renderers may be able to stretch certain characters, such as diagonal arrows, in both
directions independently.

The minsize and maxsize attributes limit the amount of stretching (in either direction). These two attributes
are given as multipliers of the operator's normal size in the direction or directions of stretching, or as absolute
sizes using units. For example, if a character has maxsize="300%", then it can grow to be no more than three
times its normal (unstretched) size.

3.2 Token Elements

57

The symmetric attribute governs whether the height and depth above and below the axis of the character are
forced to be equal (by forcing both height and depth to become the maximum of the two). An example of a
situation where one might set symmetric="false" arises with parentheses around a matrix not aligned on the
axis, which frequently occurs when multiplying non-square matrices. In this case, one wants the parentheses
to stretch to cover the matrix, whereas stretching the parentheses symmetrically would cause them to protrude
beyond one edge of the matrix. The symmetric attribute only applies to characters that stretch vertically
(otherwise it is ignored).

If a stretchy mo element is embellished (as defined earlier in this section), the mo element at its core is stretched
to a size based on the context of the embellished operator as a whole, i.e. to the same size as if the embellish-
ments were not present. For example, the parentheses in the following example (which would typically be set to
be stretchy by the operator dictionary) will be stretched to the same size as each other, and the same size they
would have if they were not underlined and overlined, and furthermore will cover the same vertical interval:

<mrow>
 <munder>
 <mo> (</mo>
 <mo> _<!--LOW LINE--> </mo>
 </munder>
 <mfrac>
 <mi> a </mi>
 <mi> b </mi>
 </mfrac>
 <mover>
 <mo>) </mo>
 <mo> ‾<!--OVERLINE--> </mo>
 </mover>
</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as
a whole, not just to the mo element itself.

3.2.5.8.1 Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default
value is stretchy="true".

<mrow>
 <mo maxsize="100%"> (</mo>
 <mfrac>
 <mi> a </mi> <mi> b </mi>
 </mfrac>
 <mo maxsize="100%">) </mo>
</mrow>

The above should render as ab as opposed to the default rendering ab .

Note that each parenthesis is sized independently; if only one of them had maxsize="100%", they would render
with different sizes.

3.2.5.8.2 Vertical Stretching Rules

The general rules governing stretchy operators are:

3 Presentation Markup

58

• If a stretchy operator is a direct sub-expression of an mrow element, or is the sole direct sub-expression •
of an mtd element in some row of a table, then it should stretch to cover the height and depth (above
and below the axis) of the non-stretchy direct sub-expressions in the mrow element or table row, unless
stretching is constrained by minsize or maxsize attributes.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its •
core.

• The preceding rules also apply in situations where the mrow element is inferred.•

• The rules for symmetric stretching only apply if symmetric="true" and if the stretching occurs in an •
mrow or in an mtr whose rowalign value is either "baseline" or "axis".

The following algorithm specifies the height and depth of vertically stretched characters:

1. Let maxheight and maxdepth be the maximum height and depth of the non-stretchy siblings within the 1.
same mrow or mtr. Let axis be the height of the math axis above the baseline.

Note that even if a minsize or maxsize value is set on a stretchy operator, it is not used in the initial
calculation of the maximum height and depth of an mrow.

2. If symmetric="true", then the computed height and depth of the stretchy operator are:2.

 height=max(maxheight-axis, maxdepth+axis) + axis
 depth =max(maxheight-axis, maxdepth+axis) - axis

Otherwise the height and depth are:
 height= maxheight
 depth = maxdepth

3. If the total size = height+depth is less than minsize or greater than maxsize, increase or decrease both 3.
height and depth proportionately so that the effective size meets the constraint.

By default, most vertical arrows, along with most opening and closing fences are defined in the operator diction-
ary to stretch by default.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each
cell of the table row containing the stretchy operator covers exactly one row. (Equivalently, the value of the
rowspan attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the
operator.) When this is not the case, the operator should only be stretched vertically to cover those table cells
that are entirely within the set of table rows that the operator's cell covers. Table cells that extend into rows not
covered by the stretchy operator's table cell should be ignored. See Section 3.5.4.2 Attributes for details about
the rowspan attribute.

3.2.5.8.3 Horizontal Stretching Rules

• If a stretchy operator, or an embellished stretchy operator, is a direct sub-expression of an munder, mover, •
or munderover element, or if it is the sole direct sub-expression of an mtd element in some column of
a table (see mtable), then it, or the mo element at its core, should stretch to cover the width of the other
direct sub-expressions in the given element (or in the same table column), given the constraints mentioned
above.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its •
core.

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell
of the table column containing the stretchy operator covers exactly one column. (Equivalently, the value of the
columnspan attribute is assumed to be 1 for all the table cells in the table row, including the cell containing

3.2 Token Elements

59

the operator.) When this is not the case, the operator should only be stretched horizontally to cover those table
cells that are entirely within the set of table columns that the operator's cell covers. Table cells that extend into
columns not covered by the stretchy operator's table cell should be ignored. See Section 3.5.4.2 Attributes for
details about the rowspan attribute.

The rules for horizontal stretching include mtd elements to allow arrows to stretch for use in commutative
diagrams laid out using mtable. The rules for the horizontal stretchiness include scripts to make examples such
as the following work:

<mrow>
 <mi> x </mi>
 <munder>
 <mo> →<!--RIGHTWARDS ARROW--> </mo>
 <mtext> maps to </mtext>
 </munder>
 <mi> y </mi>
</mrow>

This displays as x maps to y.

3.2.5.8.4 Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if
there are no other expressions whose size it should stretch to match), then it has the standard (unstretched) size
determined by the font and current mathsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element (as described
above) are also stretchy, all elements that can stretch should grow to the maximum of the normal unstretched
sizes of all elements in the containing object, if they can grow that large. If the value of minsize or maxsize
prevents that, then the specified (min or max) size is used.

For example, in an mrow containing nothing but vertically stretchy operators, each of the operators should stretch
to the maximum of all of their normal unstretched sizes, provided no other attributes are set that override this
behavior. Of course, limitations in fonts or font rendering may result in the final, stretched sizes being only
approximately the same.

3.2.5.9 Examples of Linebreaking

The following example demonstrates forced linebreaks and forced alignment:

 <mrow>
 <mrow> <mi>f</mi> <mo>⁡<!--FUNCTION APPLICATION--></mo> <mo>(</mo>

<mi>x</mi> <mo>)</mo> </mrow>

 <mo id='eq1-equals'>=</mo>
 <mrow>
 <msup>
 <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow>

<mo>)</mo> </mrow>
 <mn>4</mn>
 </msup>
 <mo linebreak='newline' linebreakstyle='before'
 indentalign='id' indenttarget='eq1-equals'>=</mo>
 <mrow>

3 Presentation Markup

60

 <msup> <mi>x</mi> <mn>4</mn> </msup>
 <mo id='eq1-plus'>+</mo>
 <mrow> <mn>4</mn> <mo>⁢<!--INVISIBLE TIMES--></mo> <msup> <mi>x</mi>

<mn>3</mn> </msup> </mrow>
 <mo>+</mo>
 <mrow> <mn>6</mn> <mo>⁢<!--INVISIBLE TIMES--></mo> <msup> <mi>x</mi>

<mn>2</mn> </msup> </mrow>

 <mo linebreak='newline' linebreakstyle='before'
 indentalignlast='id' indenttarget='eq1-plus'>+</mo>
 <mrow> <mn>4</mn> <mo>⁢<!--INVISIBLE TIMES--></mo> <mi>x</mi> </mrow>
 <mo>+</mo>
 <mn>1</mn>
 </mrow>
 </mrow>
 </mrow>

This displays as

f x = x + 1 4= x4 + 4x3 + 6x2+ 4x + 1
Note that because indentalignlast defaults to "indentalign", in the above example indentalign could have
been used in place of indentalignlast. Also, the specifying linebreakstyle='before' is not needed
because that is the default value.

3.2.6 Text <mtext>

3.2.6.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In general, the mtext
element is intended to denote commentary text.

Note that some text with a clearly defined notational role might be more appropriately marked up using mi or
mo; this is discussed further below.

An mtext element can be used to contain "renderable whitespace", i.e. invisible characters that are intended
to alter the positioning of surrounding elements. In non-graphical media, such characters are intended to have
an analogous effect, such as introducing positive or negative time delays or affecting rhythm in an audio
renderer. This is not related to any whitespace in the source MathML consisting of blanks, newlines, tabs, or
carriage returns; whitespace present directly in the source is trimmed and collapsed, as described in Section
2.1.7 Collapsing Whitespace in Input. Whitespace that is intended to be rendered as part of an element's content
must be represented by entity references or mspace elements (unless it consists only of single blanks between
non-whitespace characters).

3.2.6.2 Attributes

mtext elements accept the attributes listed in Section 3.2.2 Mathematics style attributes common to token
elements.

See also the warnings about the legal grouping of "space-like elements" in Section 3.2.7 Space <mspace/>, and
about the use of such elements for "tweaking" in Section 3.1.8 Warning about fine-tuning of presentation.

3.2 Token Elements

61

3.2.6.3 Examples

<mtext> Theorem 1: </mtext>
<mtext>  <!--THIN SPACE--> </mtext>
<mtext>   <!--space of width 5/18 em-->  <!--space of width 5/18 em-->

</mtext>
<mtext> /* a comment */ </mtext>

3.2.6.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented using mo or mi elements.
For example, the expression 'there exists δ > 0 such that f x < 1′ is equivalent to ∃δ > 0 ∍ f x < 1 and could
be represented as:

<mrow>
 <mo> there exists </mo>
 <mrow>
 <mrow>
 <mi> δ<!--GREEK SMALL LETTER DELTA--> </mi>
 <mo> > </mo>
 <mn> 0 </mn>
 </mrow>
 <mo> such that </mo>
 <mrow>
 <mrow>
 <mi> f </mi>
 <mo> ⁡<!--FUNCTION APPLICATION--> </mo>
 <mrow>
 <mo> (</mo>
 <mi> x </mi>
 <mo>) </mo>
 </mrow>
 </mrow>
 <mo> < </mo>
 <mn> 1 </mn>
 </mrow>
 </mrow>
</mrow>

An example involving an mi element is: x + x2 + ⋯ + xn. In this example, ellipsis should be represented using
an mi element, since it takes the place of a term in the sum; (see Section 3.2.3 Identifier <mi>).

On the other hand, expository text within MathML is best represented with an mtext element. An example of
this is:

Theorem 1: if x > 1, then x2 > x.

However, when MathML is embedded in HTML, or another document markup language, the example is proba-
bly best rendered with only the two inequalities represented as MathML at all, letting the text be part of the
surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosed in an mo
element is unlikely to be found in a renderer's operator dictionary, so it will be rendered with the format and
spacing appropriate for an "unrecognized operator", which may or may not be better than the format and spacing

3 Presentation Markup

62

for "text" obtained by using an mtext element. An ellipsis entity in an mi element is apt to be spaced more
appropriately for taking the place of a term within a series than if it appeared in an mtext element.

3.2.7 Space <mspace/>

3.2.7.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be
used to make linebreaking suggestions to a visual renderer. Note that the default values for attributes have been
chosen so that they typically will have no effect on rendering. Thus, the mspace element is generally used with
one or more attribute values explicitly specified.

Note the warning about the legal grouping of "space-like elements" given below, and the warning about the use
of such elements for "tweaking" in Section 3.1.8 Warning about fine-tuning of presentation. See also the other
elements that can render as whitespace, namely mtext, mphantom, and maligngroup.

3.2.7.2 Attributes

In addition to the attributes listed below, mspace elements accept the attributes described in Section 3.2.2
Mathematics style attributes common to token elements, but note that mathvariant and mathcolor have no
effect and that mathsize only affects the interpretation of units in sizing attributes (see Section 2.1.5.2 Length
Valued Attributes). mspace also accepts the indentation attributes described in Section 3.2.5.2.3 Indentation
attributes.

Name values default

width length 0em
Specifies the desired width of the space.

height length 0ex
Specifies the desired height (above the baseline) of the space.

depth length 0ex
Specifies the desired depth (below the baseline) of the space.

linebreak "auto" | "newline" | "nobreak" | "goodbreak" | "badbreak" auto
Specifies the desirability of a linebreak at this space. This attribute should be ignored if any
dimensional attribute is set.

Linebreaking was originally specified on mspace in MathML2, but controlling linebreaking on mo is to be pre-
ferred starting with MathML 3. MathML 3 adds new linebreaking attributes only to mo, not mspace. However,
because a linebreak can be specified on mspace, control over the indentation that follows that break can be
specified using the attributes listed in Section 3.2.5.2.3 Indentation attributes.

The value "indentingnewline" was defined in MathML2 for mspace; it is now deprecated. Its meaning is the
same as newline, which is compatible with its earlier use when no other linebreaking attributes are specified.
Note that linebreak values on adjacent mo and mspace elements do not interact; a "nobreak" on an mspace
will not, in itself, inhibit a break on an adjacent mo element.

3.2.7.3 Examples

<mspace height="3ex" depth="2ex"/>

<mrow>
 <mi>a</mi>
 <mo id="firstop">+</mo>
 <mi>b</mi>

3.2 Token Elements

63

 <mspace linebreak="newline" indentalign="id" indenttarget="firstop"/>
 <mo>+</mo>
 <mi>c</mi>
</mrow>

In the last example, mspace will cause the line to end after the "b" and the following line to be indented so that
the "+" that follows will align with the "+" with id="firstop".

3.2.7.4 Definition of space-like elements

A number of MathML presentation elements are "space-like" in the sense that they typically render as white-
space, and do not affect the mathematical meaning of the expressions in which they appear. As a consequence,
these elements often function in somewhat exceptional ways in other MathML expressions. For example, space-
like elements are handled specially in the suggested rendering rules for mo given in Section 3.2.5 Operator,
Fence, Separator or Accent <mo>. The following MathML elements are defined to be "space-like":

• an mtext, mspace, maligngroup, or malignmark element;•

• an mstyle, mphantom, or mpadded element, all of whose direct sub-expressions are space-like;•

• an maction element whose selected sub-expression exists and is space-like;•

• an mrow all of whose direct sub-expressions are space-like.•

Note that an mphantom is not automatically defined to be space-like, unless its content is space-like. This is
because operator spacing is affected by whether adjacent elements are space-like. Since the mphantom element
is primarily intended as an aid in aligning expressions, operators adjacent to an mphantom should behave as if
they were adjacent to the contents of the mphantom, rather than to an equivalently sized area of whitespace.

3.2.7.5 Legal grouping of space-like elements

Authors who insert space-like elements or mphantom elements into an existing MathML expression should note
that such elements are counted as arguments, in elements that require a specific number of arguments, or that
interpret different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring
argument of that element by introducing an mrow for that purpose. For example, to allow for vertical alignment
on the right edge of the base of a superscript, the expression

<msup>
 <mi> x </mi>
 <malignmark edge="right"/>
 <mn> 2 </mn>
</msup>

is illegal, because msup must have exactly 2 arguments; the correct expression would be:

<msup>
 <mrow>
 <mi> x </mi>
 <malignmark edge="right"/>
 </mrow>
 <mn> 2 </mn>
</msup>

See also the warning about "tweaking" in Section 3.1.8 Warning about fine-tuning of presentation.

3 Presentation Markup

64

3.2.8 String Literal <ms>

3.2.8.1 Description

The ms element is used to represent "string literals" in expressions meant to be interpreted by computer alge-
bra systems or other systems containing "programming languages". By default, string literals are displayed
surrounded by double quotes, with no extra spacing added around the string. As explained in Section 3.2.6 Text
<mtext>, ordinary text embedded in a mathematical expression should be marked up with mtext, or in some
cases mo or mi, but never with ms.

Note that the string literals encoded by ms are made up of characters, mglyphs and malignmarks rather than
"ASCII strings". For example, <ms>&</ms> represents a string literal containing a single character, &, and
<ms>&amp;</ms> represents a string literal containing 5 characters, the first one of which is &.

The content of ms elements should be rendered with visible "escaping" of certain characters in the content,
including at least the left and right quoting characters, and preferably whitespace other than individual space
characters. The intent is for the viewer to see that the expression is a string literal, and to see exactly which
characters form its content. For example, <ms>double quote is "</ms> might be rendered as "double quote
is \"".

Like all token elements, ms does trim and collapse whitespace in its content according to the rules of Section
2.1.7 Collapsing Whitespace in Input, so whitespace intended to remain in the content should be encoded as
described in that section.

3.2.8.2 Attributes

ms elements accept the attributes listed in Section 3.2.2 Mathematics style attributes common to token elements,
and additionally:

Name values default

lquote string "

Specifies the opening quote to enclose the content. (not necessarily ‘left quote’ in RTL context).
rquote string "

Specifies the closing quote to enclose the content. (not necessarily ‘right quote’ in RTL context).

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements deals with
various "scripting" notations, such as subscript and superscript. Another family is concerned with matrices and
tables. The remainder of the elements, discussed in this section, describe other basic notations such as fractions
and radicals, or deal with general functions such as setting style properties and error handling.

3.3.1 Horizontally Group Sub-Expressions <mrow>

3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one or more mo
elements acting as "operators" on one or more other expressions that are their "operands".

Several elements automatically treat their arguments as if they were contained in an mrow element. See the
discussion of inferred mrows in Section 3.1.3 Required Arguments. See also mfenced (Section 3.3.8 Expression

3.3 General Layout Schemata

65

Inside Pair of Fences <mfenced>), which can effectively form an mrow containing its arguments separated by
commas.

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order
in which the arguments occur within a context with LTR directionality, or right to left within a context with
RTL directionality. The dir attribute can be used to specify the directionality for a specific mrow, otherwise
it inherits the directionality from the context. For aural agents, the arguments would be rendered audibly as a
sequence of renderings of the arguments. The description in Section 3.2.5 Operator, Fence, Separator or Accent
<mo> of suggested rendering rules for mo elements assumes that all horizontal spacing between operators and
their operands is added by the rendering of mo elements (or, more generally, embellished operators), not by the
rendering of the mrows they are contained in.

MathML provides support for both automatic and manual linebreaking of expressions (that is, to break exces-
sively long expressions into several lines). All such linebreaks take place within mrows, whether they are
explicitly marked up in the document, or inferred (See Section 3.1.3.1 Inferred <mrow>s), although the control of
linebreaking is effected through attributes on other elements (See Section 3.1.7 Linebreaking of Expressions).

3.3.1.2 Attributes

mrow elements accept the attribute listed below in addition to those listed in Section 3.1.10 Mathematics style
attributes common to presentation elements.

Name values default

dir "ltr" | "rtl" inherited
specifies the overall directionality ltr (Left To Right) or rtl (Right To Left) to use to layout the
children of the row. See Section 3.1.5.1 Overall Directionality of Mathematics Formulas for further
discussion.

3.3.1.3 Proper grouping of sub-expressions using <mrow>

Sub-expressions should be grouped by the document author in the same way as they are grouped in the math-
ematical interpretation of the expression; that is, according to the underlying "syntax tree" of the expression.
Specifically, operators and their mathematical arguments should occur in a single mrow; more than one operator
should occur directly in one mrow only when they can be considered (in a syntactic sense) to act together on the
interleaved arguments, e.g. for a single parenthesized term and its parentheses, for chains of relational operators,
or for sequences of terms separated by + and -. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intel-
ligent linebreaking and indentation; and it simplifies possible semantic interpretation of presentation elements by
computer algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation
other than pure visual rendering difficult or impossible, any grouping of expressions using mrow is allowed in
MathML syntax; that is, renderers should not assume the rules for proper grouping will be followed.

3.3.1.3.1 <mrow> of one argument

MathML renderers are required to treat an mrow element containing exactly one argument as equivalent in all
ways to the single argument occurring alone, provided there are no attributes on the mrow element. If there
are attributes on the mrow element, no requirement of equivalence is imposed. This equivalence condition is
intended to simplify the implementation of MathML-generating software such as template-based authoring tools.
It directly affects the definitions of embellished operator and space-like element and the rules for determining
the default value of the form attribute of an mo element; see Section 3.2.5 Operator, Fence, Separator or Accent

3 Presentation Markup

66

<mo> and Section 3.2.7 Space <mspace/>. See also the discussion of equivalence of MathML expressions in
Section 2.3 Conformance.

3.3.1.3.2 Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions using mrow is especially desirable when generating
MathML automatically by conversion from other formats for displayed mathematics, such as TEX, which don't
always specify how sub-expressions nest. When a precise rule for grouping is desired, the following rule should
be used:

Two adjacent operators, possibly embellished, possibly separated by operands (i.e. anything other than opera-
tors), should occur in the same mrow only when the leading operator has an infix or prefix form (perhaps
inferred), the following operator has an infix or postfix form, and the operators have the same priority in the
operator dictionary (Appendix C Operator Dictionary). In all other cases, nested mrows should be used.

When forming a nested mrow (during generation of MathML) that includes just one of two successive operators
with the forms mentioned above (which mean that either operator could in principle act on the intervening
operand or operands), it is necessary to decide which operator acts on those operands directly (or would do so,
if they were present). Ideally, this should be determined from the original expression; for example, in conversion
from an operator-precedence-based format, it would be the operator with the higher precedence.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended
way of generating MathML from other formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in Section 3.2.5 Operator, Fence, Separator or
Accent <mo>.)

3.3.1.4 Examples

As an example, 2x + y − should be written as:

<mrow>
 <mrow>
 <mn> 2 </mn>
 <mo> ⁢<!--INVISIBLE TIMES--> </mo>
 <mi> x </mi>
 </mrow>
 <mo> + </mo>
 <mi> y </mi>
 <mo> - </mo>
 <mi> z </mi>
</mrow>

The proper encoding of x, y furnishes a less obvious example of nesting mrows:

<mrow>
 <mo> (</mo>
 <mrow>
 <mi> x </mi>
 <mo> , </mo>
 <mi> y </mi>
 </mrow>
 <mo>) </mo>
</mrow>

3.3 General Layout Schemata

67

In this case, a nested mrow is required inside the parentheses, since parentheses and commas, thought of as fence
and separator "operators", do not act together on their arguments.

3.3.2 Fractions <mfrac>

3.3.2.1 Description

The mfrac element is used for fractions. It can also be used to mark up fraction-like objects such as binomial
coefficients and Legendre symbols. The syntax for mfrac is

<mfrac> numerator denominator </mfrac>

The mfrac element sets displaystyle to "false", or if it was already false increments scriptlevel by 1,
within numerator and denominator. (See Section 3.1.6 Displaystyle and Scriptlevel.)

3.3.2.2 Attributes

mfrac elements accept the attributes listed below in addition to those listed in Section 3.1.10 Mathematics style
attributes common to presentation elements. The fraction line, if any, should be drawn using the color specified
by mathcolor.

Name values default

linethickness length | "thin" | "medium" | "thick" medium
Specifies the thickness of the horizontal "fraction bar", or "rule" The default value is
"medium", "thin" is thinner, but visible, "thick" is thicker; the exact thickness of these is
left up to the rendering agent.

numalign "left" | "center" | "right" center
Specifies the alignment of the numerator over the fraction.

denomalign "left" | "center" | "right" center
Specifies the alignment of the denominator under the fraction.

bevelled "true" | "false" false
Specifies whether the fraction should be displayed in a beveled style (the numerator
slightly raised, the denominator slightly lowered and both separated by a slash), rather
than "build up" vertically. See below for an example.

Thicker lines (e.g. linethickness="thick") might be used with nested fractions; a value of "0" renders without
the bar such as for binomial coefficients. These cases are shown below:

ab abcd
An example illustrating the bevelled form is shown below:1x3 + x3 = 1 x3 + x3
In a RTL directionality context, the numerator leads (on the right), the denominator follows (on the left) and the
diagonal line slants upwards going from right to left (See Section 3.1.5.1 Overall Directionality of Mathematics
Formulas for clarification). Although this format is an established convention, it is not universally followed; for
situations where a forward slash is desired in a RTL context, alternative markup, such as an mo within an mrow
should be used.

3 Presentation Markup

68

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

<mrow>
 <mo> (</mo>
 <mfrac linethickness="0">
 <mi> a </mi>
 <mi> b </mi>
 </mfrac>
 <mo>) </mo>
</mrow>
<mfrac linethickness="200%">
 <mfrac>
 <mi> a </mi>
 <mi> b </mi>
 </mfrac>
 <mfrac>
 <mi> c </mi>
 <mi> d </mi>
 </mfrac>
</mfrac>

<mfrac>
 <mn> 1 </mn>
 <mrow>
 <msup>
 <mi> x </mi>
 <mn> 3 </mn>
 </msup>
 <mo> + </mo>
 <mfrac>
 <mi> x </mi>
 <mn> 3 </mn>
 </mfrac>
 </mrow>
</mfrac>
<mo> = </mo>
<mfrac bevelled="true">
 <mn> 1 </mn>
 <mrow>
 <msup>
 <mi> x </mi>
 <mn> 3 </mn>
 </msup>
 <mo> + </mo>
 <mfrac>
 <mi> x </mi>
 <mn> 3 </mn>
 </mfrac>
 </mrow>
</mfrac>

A more generic example is:

<mfrac>
 <mrow>

3.3 General Layout Schemata

69

 <mn> 1 </mn>
 <mo> + </mo>
 <msqrt>
 <mn> 5 </mn>
 </msqrt>
 </mrow>
 <mn> 2 </mn>
</mfrac>

3.3.3 Radicals <msqrt>, <mroot>

3.3.3.1 Description

These elements construct radicals. The msqrt element is used for square roots, while the mroot element is used
to draw radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

The mroot element requires exactly 2 arguments. However, msqrt accepts a single argument, possibly being
an inferred mrow of multiple children; see Section 3.1.3 Required Arguments. The mroot element increments
scriptlevel by 2, and sets displaystyle to "false", within index, but leaves both attributes unchanged
within base. The msqrt element leaves both attributes unchanged within its argument. (See Section 3.1.6
Displaystyle and Scriptlevel.)

Note that in a RTL directionality, the surd begins on the right, rather than the left, along with the index in the
case of mroot.

3.3.3.2 Attributes

msqrt and mroot elements accept the attributes listed in Section 3.1.10 Mathematics style attributes common to
presentation elements. The surd and overbar should be drawn using the color specified by mathcolor.

3.3.4 Style Change <mstyle>

3.3.4.1 Description

The mstyle element is used to make style changes that affect the rendering of its contents. Firstly, as a
presentation element, it accepts the attributes described in Section 3.1.10 Mathematics style attributes common
to presentation elements. Additionally, it can be given any attribute accepted by any other presentation element,
except for the attributes described below. Finally, the mstyle element can be given certain special attributes
listed in the next subsection.

The mstyle element accepts a single argument, possibly being an inferred mrow of multiple children; see
Section 3.1.3 Required Arguments.

Loosely speaking, the effect of the mstyle element is to change the default value of an attribute for the elements
it contains. Style changes work in one of several ways, depending on the way in which default values are
specified for an attribute. The cases are:

• Some attributes, such as displaystyle or scriptlevel (explained below), are inherited from the sur-•
rounding context when they are not explicitly set. Specifying such an attribute on an mstyle element sets
the value that will be inherited by its child elements. Unless a child element overrides this inherited value,
it will pass it on to its children, and they will pass it to their children, and so on. But if a child element does

3 Presentation Markup

70

override it, either by an explicit attribute setting or automatically (as is common for scriptlevel), the
new (overriding) value will be passed on to that element's children, and then to their children, etc, unless it
is again overridden.

• Other attributes, such as linethickness on mfrac, have default values that are not normally inherited. •
That is, if the linethickness attribute is not set on the mfrac element, it will normally use the default
value of "1", even if it was contained in a larger mfrac element that set this attribute to a different value.
For attributes like this, specifying a value with an mstyle element has the effect of changing the default
value for all elements within its scope. The net effect is that setting the attribute value with mstyle propa-
gates the change to all the elements it contains directly or indirectly, except for the individual elements on
which the value is overridden. Unlike in the case of inherited attributes, elements that explicitly override
this attribute have no effect on this attribute's value in their children.

• Another group of attributes, such as stretchy and form, are computed from operator dictionary informa-•
tion, position in the enclosing mrow, and other similar data. For these attributes, a value specified by an
enclosing mstyle overrides the value that would normally be computed.

Note that attribute values inherited from an mstyle in any manner affect a descendant element in the mstyle's
content only if that attribute is not given a value by the descendant element. On any element for which the
attribute is set explicitly, the value specified overrides the inherited value. The only exception to this rule is when
the attribute value is documented as specifying an incremental change to the value inherited from that element's
context or rendering environment.

Note also that the difference between inherited and non-inherited attributes set by mstyle, explained above,
only matters when the attribute is set on some element within the mstyle's contents that has descendants also
setting it. Thus it never matters for attributes, such as mathsize, which can only be set on token elements (or on
mstyle itself).

MathML specifies that when the attributes height, depth or width are specified on an mstyle element,
they apply only to mspace elements, and not to the corresponding attributes of mglyph, mpadded, or mtable.
Similarly, when rowalign, columnalign, or groupalign are specified on an mstyle element, they apply
only to the mtable element, and not the mtr, mlabeledtr, mtd, and maligngroup elements. When the
lspace attribute is set with mstyle, it applies only to the mo element and not to mpadded. To be consistent,
the voffset attribute of the mpadded element can not be set on mstyle. When the deprecated fontfamily
attribute is specified on an mstyle element, it does not apply to the mglyph element. The deprecated index
attribute cannot be set on mstyle. When the align attribute is set with mstyle, it applies only to the munder,
mover, and munderover elements, and not to the mtable and mstack elements. The required attributes src
and alt on mglyph, and actiontype on maction, cannot be set on mstyle.

As a presentation element, mstyle directly accepts the mathcolor and mathbackground attributes. Thus, the
mathbackground specifies the color to fill the bounding box of the mstyle element itself; it does not specify
the default background color. This is an incompatible change from MathML 2, but we feel it is more useful and
intuitive. Since the default for mathcolor is inherited, this is no change in its behaviour.

3.3.4.2 Attributes

As stated above, mstyle accepts all attributes of all MathML presentation elements which do not have required
values. That is, all attributes which have an explicit default value or a default value which is inherited or
computed are accepted by the mstyle element.

mstyle elements accept the attributes listed in Section 3.1.10 Mathematics style attributes common to presenta-
tion elements.

3.3 General Layout Schemata

71

Additionally, mstyle can be given the following special attributes that are implicitly inherited by every
MathML element as part of its rendering environment:

Name values default

scriptlevel ("+" | "-")? unsigned-integer inherited
Changes the scriptlevel in effect for the children. When the value is given
without a sign, it sets scriptlevel to the specified value; when a sign is
given, it increments ("+") or decrements ("-") the current value. (Note that large
decrements can result in negative values of scriptlevel, but these values are
considered legal.) See Section 3.1.6 Displaystyle and Scriptlevel.

displaystyle "true" | "false" inherited
Changes the displaystyle in effect for the children. See Section 3.1.6 Dis-
playstyle and Scriptlevel.

scriptsizemultiplier number 0.71
Specifies the multiplier to be used to adjust font size due to changes in
scriptlevel. See Section 3.1.6 Displaystyle and Scriptlevel.

scriptminsize length 8pt
Specifies the minimum font size allowed due to changes in scriptlevel.
Note that this does not limit the font size due to changes to mathsize. See
Section 3.1.6 Displaystyle and Scriptlevel.

infixlinebreakstyle "before" | "after" | "duplicate" before
Specifies the default linebreakstyle to use for infix operators; see Section
3.2.5.2.2 Linebreaking attributes

decimalpoint character .
specifies the character used to determine the alignment point within mstack
and mtable columns when the "decimalpoint" value is used to specify the
alignment. The default, ".", is the decimal separator used to separate the
integral and decimal fractional parts of floating point numbers in many coun-
tries. (See Section 3.6 Elementary Math and Section 3.5.5 Alignment Markers
<maligngroup/>, <malignmark/>).

If scriptlevel is changed incrementally by an mstyle element that also sets certain other attributes, the
overall effect of the changes may depend on the order in which they are processed. In such cases, the attributes
in the following list should be processed in the following order, regardless of the order in which they occur in the
XML-format attribute list of the mstyle start tag: scriptsizemultiplier, scriptminsize, scriptlevel,
mathsize.

3.3.4.2.1 Deprecated Attributes

MathML2 allowed the binding of namedspaces to new values. It appears that this capability was never imple-
mented, and is now deprecated; namedspaces are now considered constants. For backwards compatibility, the
following attributes are accepted on the mstyle element, but are expected to have no effect.

Name values default

veryverythinmathspace length 0.0555556em
verythinmathspace length 0.111111em
thinmathspace length 0.166667em
mediummathspace length 0.222222em
thickmathspace length 0.277778em

3 Presentation Markup

72

Name values default

verythickmathspace length 0.333333em
veryverythickmathspace length 0.388889em

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
 <mo maxsize="100%"> (</mo>
 <mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
 <mo maxsize="100%">) </mo>
</mrow>

can be rewritten using mstyle as:

<mstyle maxsize="100%">
 <mrow>
 <mo> (</mo>
 <mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
 <mo>) </mo>
 </mrow>
</mstyle>

3.3.5 Error Message <merror>

3.3.5.1 Description

The merror element displays its contents as an "error message". This might be done, for example, by displaying
the contents in red, flashing the contents, or changing the background color. The contents can be any expression
or expression sequence.

merror accepts a single argument possibly being an inferred mrow of multiple children; see Section 3.1.3
Required Arguments.

The intent of this element is to provide a standard way for programs that generate MathML from other input to
report syntax errors in their input. Since it is anticipated that preprocessors that parse input syntaxes designed for
easy hand entry will be developed to generate MathML, it is important that they have the ability to indicate that a
syntax error occurred at a certain point. See Section 2.3.2 Handling of Errors.

The suggested use of merror for reporting syntax errors is for a preprocessor to replace the erroneous part
of its input with an merror element containing a description of the error, while processing the surrounding
expressions normally as far as possible. By this means, the error message will be rendered where the erroneous
input would have appeared, had it been correct; this makes it easier for an author to determine from the rendered
output what portion of the input was in error.

No specific error message format is suggested here, but as with error messages from any program, the format
should be designed to make as clear as possible (to a human viewer of the rendered error message) what was
wrong with the input and how it can be fixed. If the erroneous input contains correctly formatted subsections, it
may be useful for these to be preprocessed normally and included in the error message (within the contents of
the merror element), taking advantage of the ability of merror to contain arbitrary MathML expressions rather
than only text.

3.3 General Layout Schemata

73

3.3.5.2 Attributes

merror elements accept the attributes listed in Section 3.1.10 Mathematics style attributes common to presenta-
tion elements.

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>
 <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
 <mn> 2 </mn>
</mfraction>

which contains the non-MathML element mfraction (presumably in place of the MathML element mfrac), it
might generate the error message

<merror>
 <mtext> Unrecognized element: mfraction;
 arguments were: </mtext>
 <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
 <mtext> and </mtext>
 <mn> 2 </mn>
</merror>

Note that the preprocessor's input is not, in this case, valid MathML, but the error message it outputs is valid
MathML.

3.3.6 Adjust Space Around Content <mpadded>

3.3.6.1 Description

An mpadded element renders the same as its child content, but with the size of the child's bounding box and the
relative positioning point of its content modified according to mpadded's attributes. It does not rescale (stretch or
shrink) its content. The name of the element reflects the typical use of mpadded to add padding, or extra space,
around its content. However, mpadded can be used to make more general adjustments of size and positioning,
and some combinations, e.g. negative padding, can cause the content of mpadded to overlap the rendering of
neighboring content. See Section 3.1.8 Warning about fine-tuning of presentation for warnings about several
potential pitfalls of this effect.

The mpadded element accepts a single argument which may be an inferred mrow of multiple children; see
Section 3.1.3 Required Arguments.

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal
space (width and lspace).

3.3.6.2 Attributes

mpadded elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

height ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit |
namedspace)?

same as content

Sets or increments the height of the mpadded element. See below for discussion.

3 Presentation Markup

74

Name values default

depth ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit |
namedspace)?

same as content

Sets or increments the depth of the mpadded element. See below for discussion.
width ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit |

namedspace)?
same as content

Sets or increments the width of the mpadded element. See below for discussion.
lspace ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit |

namedspace)?
0em

Sets the horizontal position of the child content. See below for discussion.
voffset ("+" | "-")? unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit |

namedspace)?
0em

Sets the vertical position of the child content. See below for discussion.

The pseudo-unit syntax symbol is described below. Also, height, depth and width attributes are referred to as
size attributes, while lspace and voffset attributes are position attributes.

These attributes specify the size of the bounding box of the mpadded element relative to the size of the bounding
box of its child content, and specify the position of the child content of the mpadded element relative to the
natural positioning of the mpadded element. The typographical layout parameters determined by these attributes
are described in the next subsection. Depending on the form of the attribute value, a dimension may be set
to a new value, or specified relative to the child content's corresponding dimension. Values may be given as
multiples or percentages of any of the dimensions of the normal rendering of the child content using so-called
pseudo-units, or they can be set directly using standard units Section 2.1.5.2 Length Valued Attributes.

If the value of a size attribute begins with a + or - sign, it specifies an increment or decrement to the corre-
sponding dimension by the following length value. Otherwise the corresponding dimension is set directly to the
following length value. Note that since a leading minus sign indicates a decrement, the size attributes (height,
depth, width) cannot be set directly to negative values. In addition, specifying a decrement that would produce
a net negative value for these attributes has the same effect as setting the attribute to zero. In other words, the
effective bounding box of an mpadded element always has non-negative dimensions. However, negative values
are allowed for the relative positioning attributes lspace and voffset.

Length values (excluding any sign) can be specified in several formats. Each format begins with an unsigned-
number, which may be followed by a % sign (effectively scaling the number) and an optional pseudo-unit, by a
pseudo-unit alone, or by a unit (excepting %). The possible pseudo-units are the keywords height, depth, and
width. They represent the length of the same-named dimension of the mpadded element's child content.

For any of these length formats, the resulting length is the product of the number (possibly including the %)
and the following pseudo-unit, unit, namedspace or the default value for the attribute if no such unit or space is
given.

Some examples of attribute formats using pseudo-units (explicit or default) are as follows:
depth="100%height" and depth="1.0height" both set the depth of the mpadded element to the height
of its content. depth="105%" sets the depth to 1.05 times the content's depth, and either depth="+100%" or
depth="200%" sets the depth to twice the content's depth.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the
content's dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>

3.3 General Layout Schemata

75

<mpadded width="-0em"> ... </mpadded>
<mpadded width="-0height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100%width"> ... </mpadded>
<mpadded width="1width"> ... </mpadded>
<mpadded width="1.0width"> ... </mpadded>
<mpadded> ... </mpadded>

Note that the examples in the Version 2 of the MathML specification showed spaces within the attribute values,
suggesting that this was the intended format. Formally, spaces are not allowed within these values, but imple-
menters may wish to ignore such spaces to maximize backward compatibility.

3.3.6.3 Meanings of size and position attributes

See Appendix D Glossary for definitions of some of the typesetting terms used here.

The content of an mpadded element defines a fragment of mathematical notation, such as a character, fraction, or
expression, that can be regarded as a single typographical element with a natural positioning point relative to its
natural bounding box.

The size of the bounding box of an mpadded element is defined as the size of the bounding box of its content,
except as modified by the mpadded element's height, depth, and width attributes. The natural positioning
point of the child content of the mpadded element is located to coincide with the natural positioning point of
the mpadded element, except as modified by the lspace and voffset attributes. Thus, the size attributes of
mpadded can be used to expand or shrink the apparent bounding box of its content, and the position attributes of
mpadded can be used to move the content relative to the bounding box (and hence also neighboring elements).
Note that MathML doesn't define the precise relationship between "ink", bounding boxes and positioning points,
which are implementation specific. Thus, absolute values for mpadded attributes may not be portable between
implementations.

The height attribute specifies the vertical extent of the bounding box of the mpadded element above its base-
line. Increasing the height increases the space between the baseline of the mpadded element and the content
above it, and introduces padding above the rendering of the child content. Decreasing the height reduces the
space between the baseline of the mpadded element and the content above it, and removes space above the
rendering of the child content. Decreasing the height may cause content above the mpadded element to overlap
the rendering of the child content, and should generally be avoided.

The depth attribute specifies the vertical extent of the bounding box of the mpadded element below its baseline.
Increasing the depth increases the space between the baseline of the mpadded element and the content below
it, and introduces padding below the rendering of the child content. Decreasing the depth reduces the space
between the baseline of the mpadded element and the content below it, and removes space below the rendering
of the child content. Decreasing the depth may cause content below the mpadded element to overlap the
rendering of the child content, and should generally be avoided.

The width attribute specifies the horizontal distance between the positioning point of the mpadded element and
the positioning point of the following content. Increasing the width increases the space between the positioning
point of the mpadded element and the content that follows it, and introduces padding after the rendering of the
child content. Decreasing the width reduces the space between the positioning point of the mpadded element
and the content that follows it, and removes space after the rendering of the child content. Setting the width to
zero causes following content to be positioned at the positioning point of the mpadded element. Decreasing the
width should generally be avoided, as it may cause overprinting of the following content.

The lspace attribute ("leading" space; see Section 3.1.5.1 Overall Directionality of Mathematics Formulas)
specifies the horizontal location of the positioning point of the child content with respect to the positioning point

3 Presentation Markup

76

of the mpadded element. By default they coincide, and therefore absolute values for lspace have the same effect
as relative values. Positive values for the lspace attribute increase the space between the preceding content
and the child content, and introduce padding before the rendering of the child content. Negative values for
the lspace attributes reduce the space between the preceding content and the child content, and may cause
overprinting of the preceding content, and should generally be avoided. Note that the lspace attribute does not
affect the width of the mpadded element, and so the lspace attribute will also affect the space between the
child content and following content, and may cause overprinting of the following content, unless the width is
adjusted accordingly.

The voffset attribute specifies the vertical location of the positioning point of the child content with respect to
the positioning point of the mpadded element. Positive values for the voffset attribute raise the rendering of
the child content above the baseline. Negative values for the voffset attribute lower the rendering of the child
content below the baseline. In either case, the voffset attribute may cause overprinting of neighboring content,
which should generally be avoided. Note that t he voffset attribute does not affect the height or depth of
the mpadded element, and so the voffset attribute will also affect the space between the child content and
neighboring content, and may cause overprinting of the neighboring content, unless the height or depth is
adjusted accordingly.

MathML renderers should ensure that, except for the effects of the attributes, the relative spacing between the
contents of the mpadded element and surrounding MathML elements would not be modified by replacing an
mpadded element with an mrow element with the same content, even if linebreaking occurs within the mpadded
element. MathML does not define how non-default attribute values of an mpadded element interact with the
linebreaking algorithm.

The effects of the size and position attributes are illustrated below. The following diagram illustrates the use of
lspace and voffset to shift the position of child content without modifying the mpadded bounding box.

xyz
x yz

baseline

voffset

lspace

The corresponding MathML is:

<mrow>
 <mi>x</mi>
 <mpadded lspace="0.2em" voffset="0.3ex">
 <mi>y</mi>
 </mpadded>
 <mi>z</mi>
</mrow>

3.3 General Layout Schemata

77

The next diagram illustrates the use of width, height and depth to modifying the mpadded bounding box
without changing the relative position of the child content.

xyz
xy z

baseline

△width

△height

△depth

The corresponding MathML is:

<mrow>
 <mi>x</mi>
 <mpadded width="+90%width" height="+0.3ex" depth="+0.3ex">
 <mi>y</mi>
 </mpadded>
 <mi>z</mi>
</mrow>

The final diagram illustrates the generic use of mpadded to modify both the bounding box and relative position
of child content.

xyz
x y z

baseline

lspace △width

The corresponding MathML is:

<mrow>
 <mi>x</mi>
 <mpadded lspace="0.3em" width="+0.6em">
 <mi>y</mi>
 </mpadded>

3 Presentation Markup

78

 <mi>z</mi>
</mrow>

3.3.7 Making Sub-Expressions Invisible <mphantom>

3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline
position, that its contents would have if they were rendered normally. mphantom can be used to align parts of an
expression by invisibly duplicating sub-expressions.

The mphantom element accepts a single argument possibly being an inferred mrow of multiple children; see
Section 3.1.3 Required Arguments.

Note that it is possible to wrap both an mphantom and an mpadded element around one MathML expression, as
in <mphantom><mpadded attribute-settings> ... </mpadded></mphantom>, to change its size and
make it invisible at the same time.

MathML renderers should ensure that the relative spacing between the contents of an mphantom element and the
surrounding MathML elements is the same as it would be if the mphantom element were replaced by an mrow
element with the same content. This holds even if linebreaking occurs within the mphantom element.

For the above reason, mphantom is not considered space-like (Section 3.2.7 Space <mspace/>) unless its
content is space-like, since the suggested rendering rules for operators are affected by whether nearby elements
are space-like. Even so, the warning about the legal grouping of space-like elements may apply to uses of
mphantom.

3.3.7.2 Attributes

mphantom elements accept the attributes listed in Section 3.1.10 Mathematics style attributes common to presen-
tation elements (the mathcolor has no effect).

3.3.7.3 Examples

There is one situation where the preceding rules for rendering an mphantom may not give the desired effect.
When an mphantom is wrapped around a subsequence of the arguments of an mrow, the default determination
of the form attribute for an mo element within the subsequence can change. (See the default value of the form
attribute described in Section 3.2.5 Operator, Fence, Separator or Accent <mo>.) It may be necessary to add an
explicit form attribute to such an mo in these cases. This is illustrated in the following example.

In this example, mphantom is used to ensure alignment of corresponding parts of the numerator and denominator
of a fraction:

<mfrac>
 <mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mi> y </mi>
 <mo> + </mo>
 <mi> z </mi>
 </mrow>
 <mrow>
 <mi> x </mi>
 <mphantom>
 <mo form="infix"> + </mo>

3.3 General Layout Schemata

79

 <mi> y </mi>
 </mphantom>
 <mo> + </mo>
 <mi> z </mi>
 </mrow>
</mfrac>

This would render as something likex + y +x +
rather than asx + y +x +
The explicit attribute setting form="infix" on the mo element inside the mphantom sets the form attribute to
what it would have been in the absence of the surrounding mphantom. This is necessary since otherwise, the +
sign would be interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the
arguments <mo>+</mo> and <mi>y</mi> in its own mphantom element, i.e.

<mfrac>
 <mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mi> y </mi>
 <mo> + </mo>
 <mi> z </mi>
 </mrow>
 <mrow>
 <mi> x </mi>
 <mphantom>
 <mo> + </mo>
 </mphantom>
 <mphantom>
 <mi> y </mi>
 </mphantom>
 <mo> + </mo>
 <mi> z </mi>
 </mrow>
</mfrac>

3.3.8 Expression Inside Pair of Fences <mfenced>

3.3.8.1 Description

The mfenced element provides a convenient form in which to express common constructs involving fences (i.e.
braces, brackets, and parentheses), possibly including separators (such as comma) between the arguments.

For example, <mfenced> <mi>x</mi> </mfenced> renders as " x " and is equivalent to

3 Presentation Markup

80

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and <mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as " x, y " and is equivalent to

<mrow>
 <mo> (</mo>
 <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
 <mo>) </mo>
</mrow>

Individual fences or separators are represented using mo elements, as described in Section 3.2.5 Operator, Fence,
Separator or Accent <mo>. Thus, any mfenced element is completely equivalent to an expanded form described
below; either form can be used in MathML, at the convenience of an author or of a MathML-generating
program. A MathML renderer is required to render either of these forms in exactly the same way.

In general, an mfenced element can contain zero or more arguments, and will enclose them between fences
in an mrow; if there is more than one argument, it will insert separators between adjacent arguments, using an
additional nested mrow around the arguments and separators for proper grouping (Section 3.3.1 Horizontally
Group Sub-Expressions <mrow>). The general expanded form is shown below. The fences and separators will be
parentheses and comma by default, but can be changed using attributes, as shown in the following table.

3.3.8.2 Attributes

mfenced elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements. The delimiters and separators should be drawn using the color
specified by mathcolor.

Name values default

open string (
Specifies the opening delimiter. Since it is used as the content of an mo element, any white-
space will be trimmed and collapsed as described in Section 2.1.7 Collapsing Whitespace in
Input.

close string)
Specifies the closing delimiter. Since it is used as the content of an mo element, any white-
space will be trimmed and collapsed as described in Section 2.1.7 Collapsing Whitespace in
Input.

separators string ,
Specifies a sequence of zero or more separator characters, optionally separated by white-
space. Each pair of arguments is displayed separated by the corresponding separator (none
appears after the last argument). If there are too many separators, the excess are ignored;
if there are too few, the last separator is repeated. Any whitespace within separators is
ignored.

A generic mfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
 close="closing-fence"
 separators="sep#1 sep#2 ... sep#(n-1)" >
 arg#1
 ...
 arg#n
</mfenced>

3.3 General Layout Schemata

81

In an RTL directionality context, since the initial text direction is RTL, characters in the open and close
attributes that have a mirroring counterpart will be rendered in that mirrored form. In particular, the default
values will render correctly as a parenthesized sequence in both LTR and RTL contexts.

The general mfenced element shown above is equivalent to the following expanded form:

<mrow>
 <mo fence="true"> opening-fence </mo>
 <mrow>
 arg#1
 <mo separator="true"> sep#1 </mo>
 ...
 <mo separator="true"> sep#(n-1) </mo>
 arg#n
 </mrow>
 <mo fence="true"> closing-fence </mo>
</mrow>

Each argument except the last is followed by a separator. The inner mrow is added for proper grouping, as
described in Section 3.3.1 Horizontally Group Sub-Expressions <mrow>.

When there is only one argument, the above form has no separators; since <mrow> arg#1 </mrow> is equiv-
alent to arg#1 (as described in Section 3.3.1 Horizontally Group Sub-Expressions <mrow>), this case is also
equivalent to:

<mrow>
 <mo fence="true"> opening-fence </mo>
 arg#1
 <mo fence="true"> closing-fence </mo>
</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there
are too few, the last one is repeated as necessary. Thus, the default value of separators="," is equivalent to
separators=",,", separators=",,,", etc. If there are no separator characters provided but some are needed, for
example if separators=" " or "" and there is more than one argument, then no separator elements are inserted
at all — that is, the elements <mo separator="true"> sep#i </mo> are left out entirely. Note that this is
different from inserting separators consisting of mo elements with empty content.

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"
 close="closing-fence"
 separators="anything" >
</mfenced>

the equivalent expanded form is defined to include just the fences within an mrow:

<mrow>
 <mo fence="true"> opening-fence </mo>
 <mo fence="true"> closing-fence </mo>
</mrow>

Note that not all "fenced expressions" can be encoded by an mfenced element. Such exceptional expressions
include those with an "embellished" separator or fence or one enclosed in an mstyle element, a missing or
extra separator or fence, or a separator with multiple content characters. In these cases, it is necessary to encode
the expression using an appropriately modified version of an expanded form. As discussed above, it is always

3 Presentation Markup

82

permissible to use the expanded form directly, even when it is not necessary. In particular, authors cannot be
guaranteed that MathML preprocessors won't replace occurrences of mfenced with equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes on the mo elements that identify
them as fences or separators. Since the most common choices of fences and separators already occur in the
operator dictionary with those attributes, authors would not normally need to specify those attributes explicitly
when using the expanded form directly. Also, the rules for the default form attribute (Section 3.2.5 Operator,
Fence, Separator or Accent <mo>) cause the opening and closing fences to be effectively given the values
form="prefix" and form="postfix" respectively, and the separators to be given the value form="infix".

Note that it would be incorrect to use mfenced with a separator of, for instance, "+", as an abbreviation for an
expression using "+" as an ordinary operator, e.g.

<mrow>
 <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>
</mrow>

This is because the + signs would be treated as separators, not infix operators. That is, it would render as if they
were marked up as <mo separator="true">+</mo>, which might therefore render inappropriately.

3.3.8.3 Examples

a + b
<mfenced>
 <mrow>
 <mi> a </mi>
 <mo> + </mo>
 <mi> b </mi>
 </mrow>
</mfenced>

Note that the above mrow is necessary so that the mfenced has just one argument. Without it, this would render
incorrectly as " a, + , b ".

0, 1
<mfenced open="[">
 <mn> 0 </mn>
 <mn> 1 </mn>
</mfenced>

f x, y
<mrow>
 <mi> f </mi>
 <mo> ⁡<!--FUNCTION APPLICATION--> </mo>
 <mfenced>
 <mi> x </mi>
 <mi> y </mi>
 </mfenced>
</mrow>

3.3 General Layout Schemata

83

3.3.9 Enclose Expression Inside Notation <menclose>

3.3.9.1 Description

The menclose element renders its content inside the enclosing notation specified by its notation attribute.
menclose accepts a single argument possibly being an inferred mrow of multiple children; see Section 3.1.3
Required Arguments.

3.3.9.2 Attributes

menclose elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathemat-
ics style attributes common to presentation elements. The notations should be drawn using the color specified by
mathcolor.

The values allowed for notation are open-ended. Conforming renderers may ignore any value they do not
handle, although renderers are encouraged to render as many of the values listed below as possible.

Name values default

notation ("longdiv" | "actuarial" | "phasorangle" | "radical" | "box" | "roundedbox" | "circle"
| "left" | "right" | "top" | "bottom" | "updiagonalstrike" | "downdiagonalstrike" |
"verticalstrike" | "horizontalstrike" | "northeastarrow" | "madruwb" | text) +

longdiv

Specifies a space separated list of notations to be used to enclose the children. See below for a
description of each type of notation.

Any number of values can be given for notation separated by whitespace; all of those given and understood
by a MathML renderer should be rendered. Each should be rendered as if the others were not present; they
should not nest one inside of the other. For example, notation="circle box" should result in circle and a box
around the contents of menclose; the circle and box may overlap. This is shown in the first example below.
Of the predefined notations, only the following are affected by the directionality (see Section 3.1.5.1 Overall
Directionality of Mathematics Formulas):

• "radical"•

• "phasorangle"•

When notation has the value "longdiv", the contents are drawn enclosed by a long division symbol. MathML
3 adds the mlongdiv element (Section 3.6.2 Long Division <mlongdiv>). This element supports notations for
long division used in several countries and can be used to create a complete example of long division as shown
in Section 3.6.8.3 Long Division. When notation is specified as "actuarial", the contents are drawn enclosed
by an actuarial symbol. A similar result can be achieved with the value "top right". The case of notation=
"radical" is equivalent to the msqrt schema.

The values "box", "roundedbox", and "circle" should enclose the contents as indicated by the values. The amount
of distance between the box, roundedbox, or circle, and the contents are not specified by MathML, and is left
to the renderer. In practice, paddings on each side of 0.4em in the horizontal direction and .5ex in the vertical
direction seem to work well.

The values "left", "right", "top" and "bottom" should result in lines drawn on those sides of the contents. The
values "northeastarrow", "updiagonalstrike", "downdiagonalstrike", "verticalstrike" and "horizontalstrike" should
result in the indicated strikeout lines being superimposed over the content of the menclose, e.g. a strikeout that
extends from the lower left corner to the upper right corner of the menclose element for "updiagonalstrike", etc.

3 Presentation Markup

84

The value "northeastarrow" is a recommended value to implement because it can be used to implement TeX's
\cancelto command. If a renderer implements other arrows for menclose, it is recommended that the arrow
names are chosen from the following full set of names for consistancy and standardization among renderers:

• "uparrow"•

• "rightarrow"•

• "downarrow"•

• "leftarrow"•

• "northwestarrow"•

• "southwestarrow"•

• "southeastarrow"•

• "northeastarrow"•

• "updownarrow"•

• "leftrightarrow"•

• "northwestsoutheastarrow"•

• "northeastsouthwestarrow"•

The value "madruwb" should generate an enclosure representing an Arabic factorial (‘madruwb’ is the transliter-
ation of the Arabic مضروب for factorial). This is shown in the third example below.

The baseline of an menclose element is the baseline of its child (which might be an implied mrow).

3.3.9.3 Examples

An example of using multiple attributes is

<menclose notation='circle box'>
 <mi> x </mi><mo> + </mo><mi> y </mi>
</menclose>

which renders with the box and circle overlapping roughly asx + y
An example of using menclose for actuarial notation is

<msub>
 <mi>a</mi>
 <mrow>
 <menclose notation='actuarial'>
 <mi>n</mi>
 </menclose>
 <mo>⁣<!--INVISIBLE SEPARATOR--></mo>
 <mi>i</mi>
 </mrow>
</msub>

which renders roughly asani

3.3 General Layout Schemata

85

An example of "phasorangle", which is used in circuit analysis, is:

 <mi>C</mi>
 <mrow>
 <menclose notation='phasorangle'>
 <mrow>
 <mo>−<!--MINUS SIGN--></mo>
 <mfrac>
 <mi>π<!--GREEK SMALL LETTER PI--></mi>
 <mn>2</mn>
 </mfrac>
 </mrow>
 </menclose>
 </mrow>

which renders roughly as

C − π2
An example of "madruwb" is:

 <menclose notation="madruwb">
 <mn>12</mn>
 </menclose>

which renders roughly as

12ل

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of
scripts and embellishments to symbols is a very common notational device in mathematics. For purely visual
layout, a single general-purpose element could suffice for positioning scripts and embellishments in any of the
traditional script locations around a given base. However, in order to capture the abstract structure of common
notation better, MathML provides several more specialized scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above
and below the base. These elements can be used to place limits on large operators, or for placing accents and
lines above or below the base. The rules for rendering accents differ from those for overscripts and underscripts,
and this difference can be controlled with the accent and accentunder attributes, as described in the appropri-
ate sections below.

Rendering of scripts is affected by the scriptlevel and displaystyle attributes, which are part of the
environment inherited by the rendering process of every MathML expression, and are described in Section 3.1.6
Displaystyle and Scriptlevel. These attributes cannot be given explicitly on a scripting element, but can be
specified on the start tag of a surrounding mstyle element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary
subscripts and superscripts in that they must align in vertical columns. Tensor indices can also occur in prescript

3 Presentation Markup

86

positions. Note that ordinary scripts follow the base (on the right in LTR context, but on the left in RTL context);
prescripts precede the base (on the left (right) in LTR (RTL) context).

Because presentation elements should be used to describe the abstract notational structure of expressions, it is
important that the base expression in all "scripting" elements (i.e. the first argument expression) should be the
entire expression that is being scripted, not just the trailing character. For example, x + y 2 should be written as:

<msup>
 <mrow>
 <mo> (</mo>
 <mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mi> y </mi>
 </mrow>
 <mo>) </mo>
 </mrow>
 <mn> 2 </mn>
</msup>

3.4.1 Subscript <msub>

3.4.1.1 Description

The msub element attaches a subscript to a base using the syntax

<msub> base subscript </msub>

It increments scriptlevel by 1, and sets displaystyle to "false", within subscript, but leaves both attributes
unchanged within base. (See Section 3.1.6 Displaystyle and Scriptlevel.)

3.4.1.2 Attributes

msub elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

subscriptshift length automatic
Specifies the minimum amount to shift the baseline of subscript down; the default is for
the rendering agent to use its own positioning rules.

3.4.2 Superscript <msup>

3.4.2.1 Description

The msup element attaches a superscript to a base using the syntax

<msup> base superscript </msup>

It increments scriptlevel by 1, and sets displaystyle to "false", within superscript, but leaves both attrib-
utes unchanged within base. (See Section 3.1.6 Displaystyle and Scriptlevel.)

3.4 Script and Limit Schemata

87

3.4.2.2 Attributes

msup elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

superscriptshift length automatic
Specifies the minimum amount to shift the baseline of superscript up; the default is
for the rendering agent to use its own positioning rules.

3.4.3 Subscript-superscript Pair <msubsup>

3.4.3.1 Description

The msubsup element is used to attach both a subscript and superscript to a base expression.

<msubsup> base subscript superscript </msubsup>

It increments scriptlevel by 1, and sets displaystyle to "false", within subscript and superscript, but
leaves both attributes unchanged within base. (See Section 3.1.6 Displaystyle and Scriptlevel.)

Note that both scripts are positioned tight against the base as shown here x12 versus the staggered positioning of
nested scripts as shown here x12; the latter can be achieved by nesting an msub inside an msup.

3.4.3.2 Attributes

msubsup elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

subscriptshift length automatic
Specifies the minimum amount to shift the baseline of subscript down; the default is
for the rendering agent to use its own positioning rules.

superscriptshift length automatic
Specifies the minimum amount to shift the baseline of superscript up; the default is
for the rendering agent to use its own positioning rules.

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. How-
ever, another important use is placing limits on certain large operators whose limits are traditionally displayed in
the script positions even when rendered in display style. The most common of these is the integral. For example,

0
1ⅇx ⅆx

would be represented as

<mrow>
 <msubsup>
 <mo> ∫<!--INTEGRAL--> </mo>
 <mn> 0 </mn>
 <mn> 1 </mn>
 </msubsup>

3 Presentation Markup

88

 <mrow>
 <msup>
 <mi> ⅇ<!--DOUBLE-STRUCK ITALIC SMALL E--> </mi>
 <mi> x </mi>
 </msup>
 <mo> ⁢<!--INVISIBLE TIMES--> </mo>
 <mrow>
 <mo> ⅆ<!--DOUBLE-STRUCK ITALIC SMALL D--> </mo>
 <mi> x </mi>
 </mrow>
 </mrow>
</mrow>

3.4.4 Underscript <munder>

3.4.4.1 Description

The munder element attaches an accent or limit placed under a base using the syntax

<munder> base underscript </munder>

It always sets displaystyle to "false" within the underscript, but increments scriptlevel by 1 only when
accentunder is "false". Within base, it always leaves both attributes unchanged. (See Section 3.1.6 Displays-
tyle and Scriptlevel.)

If base is an operator with movablelimits="true" (or an embellished operator whose mo element core has
movablelimits="true"), and displaystyle="false", then underscript is drawn in a subscript position. In this
case, the accentunder attribute is ignored. This is often used for limits on symbols such as ∑.

3.4.4.2 Attributes

munder elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

accentunder "true" | "false" automatic
Specifies whether underscript is drawn as an "accent" or as a limit. An accent is drawn
the same size as the base (without incrementing scriptlevel) and is drawn closer to the
base.

align "left" | "right" | "center" center
Specifies whether the script is aligned left, center, or right under/over the base. As specfied
in Section 3.2.5.8.3 Horizontal Stretching Rules, the core of underscripts that are embel-
lished operators should stretch to cover the base, but the alignment is based on the entire
underscript.

The default value of accentunder is false, unless underscript is an mo element or an embellished operator
(see Section 3.2.5 Operator, Fence, Separator or Accent <mo>). If underscript is an mo element, the value of its
accent attribute is used as the default value of accentunder. If underscript is an embellished operator, the
accent attribute of the mo element at its core is used as the default value. As with all attributes, an explicitly
given value overrides the default.

Here is an example (accent versus underscript): x + y + versus x + y + . The MathML representation for this
example is shown below.

3.4 Script and Limit Schemata

89

3.4.4.3 Examples

The MathML representation for the example shown above is:

<mrow>
 <munder accentunder="true">
 <mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mi> y </mi>
 <mo> + </mo>
 <mi> z </mi>
 </mrow>
 <mo> ⏟<!--BOTTOM CURLY BRACKET--> </mo>
 </munder>
 <mtext> <!--NO-BREAK SPACE-->versus <!--NO-BREAK SPACE--></mtext>
 <munder accentunder="false">
 <mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mi> y </mi>
 <mo> + </mo>
 <mi> z </mi>
 </mrow>
 <mo> ⏟<!--BOTTOM CURLY BRACKET--> </mo>
 </munder>
</mrow>

3.4.5 Overscript <mover>

3.4.5.1 Description

The mover element attaches an accent or limit placed over a base using the syntax

<mover> base overscript </mover>

It always sets displaystyle to "false" within overscript, but increments scriptlevel by 1 only when
accent is "false". Within base, it always leaves both attributes unchanged. (See Section 3.1.6 Displaystyle and
Scriptlevel.)

If base is an operator with movablelimits="true" (or an embellished operator whose mo element core has
movablelimits="true"), and displaystyle="false", then overscript is drawn in a superscript position. In this
case, the accent attribute is ignored. This is often used for limits on symbols such as ∑.

3.4.5.2 Attributes

mover elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

accent "true" | "false" automatic
Specifies whether overscript is drawn as an "accent" or as a limit. An accent is drawn the same
size as the base (without incrementing scriptlevel) and is drawn closer to the base.

3 Presentation Markup

90

Name values default

align "left" | "right" | "center" center
Specifies whether the script is aligned left, center, or right under/over the base. As specfied in Sec-
tion 3.2.5.8.3 Horizontal Stretching Rules, the core of overscripts that are embellished operators
should stretch to cover the base, but the alignment is based on the entire overscript.

The difference between an accent versus limit is shown here: x versus x. These differences also apply to
"mathematical accents" such as bars or braces over expressions: x + y + versus x + y + . The MathML
representation for each of these examples is shown below.

The default value of accent is false, unless overscript is an mo element or an embellished operator (see Section
3.2.5 Operator, Fence, Separator or Accent <mo>). If overscript is an mo element, the value of its accent
attribute is used as the default value of accent for mover. If overscript is an embellished operator, the accent
attribute of the mo element at its core is used as the default value.

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>
 <mover accent="true">
 <mi> x </mi>
 <mo> ^<!--CIRCUMFLEX ACCENT--> </mo>
 </mover>
 <mtext> <!--NO-BREAK SPACE-->versus <!--NO-BREAK SPACE--></mtext>
 <mover accent="false">
 <mi> x </mi>
 <mo> ^<!--CIRCUMFLEX ACCENT--> </mo>
 </mover>
</mrow>

<mrow>
 <mover accent="true">
 <mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mi> y </mi>
 <mo> + </mo>
 <mi> z </mi>
 </mrow>
 <mo> ⏞<!--TOP CURLY BRACKET--> </mo>
 </mover>
 <mtext> <!--NO-BREAK SPACE-->versus <!--NO-BREAK SPACE--></mtext>
 <mover accent="false">
 <mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mi> y </mi>
 <mo> + </mo>
 <mi> z </mi>
 </mrow>
 <mo> ⏞<!--TOP CURLY BRACKET--> </mo>
 </mover>
</mrow>

3.4 Script and Limit Schemata

91

3.4.6 Underscript-overscript Pair <munderover>

3.4.6.1 Description

The munderover element attaches accents or limits placed both over and under a base using the syntax

<munderover> base underscript overscript </munderover>

It always sets displaystyle to "false" within underscript and overscript, but increments scriptlevel by
1 only when accentunder or accent, respectively, are "false". Within base, it always leaves both attributes
unchanged. (see Section 3.1.6 Displaystyle and Scriptlevel).

If base is an operator with movablelimits="true" (or an embellished operator whose mo element core has
movablelimits="true"), and displaystyle="false", then underscript and overscript are drawn in a subscript
and superscript position, respectively. In this case, the accentunder and accent attributes are ignored. This is
often used for limits on symbols such as ∑.

3.4.6.2 Attributes

munderover elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathe-
matics style attributes common to presentation elements.

Name values default

accent "true" | "false" automatic
Specifies whether overscript is drawn as an "accent" or as a limit. An accent is drawn the
same size as the base (without incrementing scriptlevel) and is drawn closer to the
base.

accentunder "true" | "false" automatic
Specifies whether underscript is drawn as an "accent" or as a limit. An accent is drawn
the same size as the base (without incrementing scriptlevel) and is drawn closer to the
base.

align "left" | "right" | "center" center
Specifies whether the scripts are aligned left, center, or right under/over the base. As
specfied in Section 3.2.5.8.3 Horizontal Stretching Rules, the core of underscripts and over-
scripts that are embellished operators should stretch to cover the base, but the alignment is
based on the entire underscript or overscript.

The munderover element is used instead of separate munder and mover elements so that the underscript and
overscript are vertically spaced equally in relation to the base and so that they follow the slant of the base as in
the second expression shown below:

∫0∞ versus ∫0∞. The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size,
but is noticeable on a higher resolution device such as a printer and when using large font sizes. In addition to
the visual differences, attaching both the underscript and overscript to the same base more accurately reflects the
semantics of the expression.

The defaults for accent and accentunder are computed in the same way as for munder and mover, respec-
tively.

3 Presentation Markup

92

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using separate munder
and mover elements, and the second one using an munderover element, is:

<mrow>
 <mover>
 <munder>
 <mo> ∫<!--INTEGRAL--> </mo>
 <mn> 0 </mn>
 </munder>
 <mi> ∞<!--INFINITY--> </mi>
 </mover>
 <mtext> <!--NO-BREAK SPACE-->versus <!--NO-BREAK SPACE--></mtext>
 <munderover>
 <mo> ∫<!--INTEGRAL--> </mo>
 <mn> 0 </mn>
 <mi> ∞<!--INFINITY--> </mi>
 </munderover>
</mrow>

3.4.7 Prescripts and Tensor Indices <mmultiscripts>, <mprescripts/>, <none/>

3.4.7.1 Description

Presubscripts and tensor notations are represented by a single element, mmultiscripts, using the syntax:

<mmultiscripts>
 base
 (subscript superscript)*
 [<mprescripts/> (presubscript presuperscript)*]
</mmultiscripts>

This element allows the representation of any number of vertically-aligned pairs of subscripts and superscripts,
attached to one base expression. It supports both postscripts and prescripts. Missing scripts can be represented by
the empty element none.

The prescripts are optional, and when present are given after the postscripts, because prescripts are relatively rare
compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and
superscripts (in that order) that represent all of the postscripts. This list is optionally followed by an empty
element mprescripts and a list of zero or more pairs of vertically-aligned presubscripts and presuperscripts
that represent all of the prescripts. The pair lists for postscripts and prescripts are displayed in the same order as
the directional context (ie. left-to-right order in LTR context). If no subscript or superscript should be rendered
in a given position, then the empty element none should be used in that position. For each sub and superscript
pair, horizontal-alignment of the elements in the pair should be towards the base of the mmultiscripts. That is,
pre-scripts should be right aligned, and post-scripts should be left aligned.

The base, subscripts, superscripts, the optional separator element mprescripts, the presubscripts, and the
presuperscripts, are all direct sub-expressions of the mmultiscripts element, i.e. they are all at the same level
of the expression tree. Whether a script argument is a subscript or a superscript, or whether it is a presubscript
or a presuperscript is determined by whether it occurs in an even-numbered or odd-numbered argument position,
respectively, ignoring the empty element mprescripts itself when determining the position. The first argument,

3.4 Script and Limit Schemata

93

the base, is considered to be in position 1. The total number of arguments must be odd, if mprescripts is not
given, or even, if it is.

The empty element mprescripts is only allowed as direct sub-expression of mmultiscripts.

3.4.7.2 Attributes

Same as the attributes of msubsup. See Section 3.4.3.2 Attributes.

The mmultiscripts element increments scriptlevel by 1, and sets displaystyle to "false", within each
of its arguments except base, but leaves both attributes unchanged within base. (See Section 3.1.6 Displaystyle
and Scriptlevel.)

3.4.7.3 Examples

Examples of the use of mmultiscripts are:

F10 ; a; .

<mrow>
 <mmultiscripts>
 <mi> F </mi>
 <mn> 1 </mn>
 <none/>
 <mprescripts/>
 <mn> 0 </mn>
 <none/>
 </mmultiscripts>
 <mo> ⁡<!--FUNCTION APPLICATION--> </mo>
 <mrow>
 <mo> (</mo>
 <mrow>
 <mo> ; </mo>
 <mi> a </mi>
 <mo> ; </mo>
 <mi> z </mi>
 </mrow>
 <mo>) </mo>
 </mrow>
</mrow>

Rijkl (where k and l are different indices)

<mmultiscripts>
 <mi> R </mi>
 <mi> i </mi>
 <none/>
 <none/>
 <mi> j </mi>
 <mi> k </mi>
 <none/>
 <mi> l </mi>
 <none/>
</mmultiscripts>

3 Presentation Markup

94

X12311231
 <mmultiscripts>
 <mi> X </mi>
 <mn> 123 </mn>
 <mn> 1 </mn>
 <mprescripts/>
 <mn> 123 </mn>
 <mn> 1 </mn>
 </mmultiscripts>

An additional example of mmultiscripts shows how the binomial coefficient512
can be displayed in Arabic style

12ل 5
<mstyle dir="rtl">
 <mmultiscripts><mo>ل<!--ARABIC LETTER LAM--></mo>
 <mn>12</mn><none/>
 <mprescripts/>
 <none/><mn>5</mn>
 </mmultiscripts>
</mstyle>

3.5 Tabular Math

Matrices, arrays and other table-like mathematical notation are marked up using mtable, mtr, mlabeledtr and
mtd elements. These elements are similar to the table, tr and td elements of HTML, except that they provide
specialized attributes for the fine layout control necessary for commutative diagrams, block matrices and so on.

While the two-dimensional layouts used for elementary math such as addition and multiplication are somewhat
similar to tables, they differ in important ways. For layout and for accessibility reasons, the mstack and
mlongdiv elements discussed in Section 3.6 Elementary Math should be used for elementary math notations.

In addition to the table elements mentioned above, the mlabeledtr element is used for labeling rows of a table.
This is useful for numbered equations. The first child of mlabeledtr is the label. A label is somewhat special in
that it is not considered an expression in the matrix and is not counted when determining the number of columns
in that row.

3.5.1 Table or Matrix <mtable>

3.5.1.1 Description

A matrix or table is specified using the mtable element. Inside of the mtable element, only mtr or
mlabeledtr elements may appear. (In MathML 1.x, the mtable was allowed to ‘infer’ mtr elements around its
arguments, and the mtr element could infer mtd elements. This behaviour is deprecated.)

3.5 Tabular Math

95

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow
them) are effectively padded on the right (or left in RTL context) with empty mtd elements so that the number
of columns in each row equals the maximum number of columns in any row of the table. Note that the use of
mtd elements with non-default values of the rowspan or columnspan attributes may affect the number of mtd
elements that should be given in subsequent mtr elements to cover a given number of columns. Note also that
the label in an mlabeledtr element is not considered a column in the table.

MathML does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer
to resolve conflicts between the width attribute and other constraints on the width of a table, such as explicit
values for columnwidth attributes, and minimum sizes for table cell contents. For a discussion of table layout
algorithms, see Cascading Style Sheets, level 2.

3.5.1.2 Attributes

mtable elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements. Any rules drawn as part of the mtable should be drawn using
the color specified by mathcolor.

Name values default

align ("top" | "bottom" | "center" | "baseline" | "axis"),
rownumber?

axis

specifies the vertical alignment of the table with respect to its environment. "axis"
means to align the vertical center of the table on the environment's axis. (The axis of
an equation is an alignment line used by typesetters. It is the line on which a minus
sign typically lies.) "center" and "baseline" both mean to align the center of the table
on the environment's baseline. "top" or "bottom" aligns the top or bottom of the table
on the environment's baseline. If the align attribute value ends with a rownumber,
the specified row (counting from 1 for the top row), rather than the table as a whole,
is aligned in the way described above with the exceptions noted below. If rownumber
is negative, it counts rows from the bottom. When the value of rownumber is out of
range or not an integer, it is ignored. If a row number is specified and the alignment
value is "baseline" or "axis", the row's baseline or axis is used for alignment. Note
this is only well defined when the rowalign value is "baseline" or "axis"; MathML
does not specify how "baseline" or "axis" alignment should occur for other values of
rowalign.

rowalign ("top" | "bottom" | "center" | "baseline" | "axis") + baseline
specifies the vertical alignment of the cells with respect to other cells within the same
row: "top" aligns the tops of each entry across the row; "bottom" aligns the bottoms of
the cells, "center" centers the cells; "baseline" aligns the baselines of the cells; "axis"
aligns the axis of each cells. (See the note below about multiple values).

columnalign ("left" | "center" | "right") + center
specifies the horizontal alignment of the cells with respect to other cells within the
same column: "left" aligns the left side of the cells; "center" centers each cells; "right"
aligns the right side of the cells. (See the note below about multiple values).

groupalign group-alignment-list-list {left}
[this attribute is described with the alignment elements, maligngroup

and malignmark, in Section 3.5.5 Alignment Markers <maligngroup/>,
<malignmark/>.]

3 Presentation Markup

96

http://www.w3.org/TR/CSS2/tables.html#width-layout

Name values default

alignmentscope ("true" | "false") + true
[this attribute is described with the alignment elements, maligngroup

and malignmark, in Section 3.5.5 Alignment Markers <maligngroup/>,
<malignmark/>.]

columnwidth ("auto" | length | "fit") + auto
specifies how wide a column should be: "auto" means that the column should be as
wide as needed; an explicit length means that the column is exactly that wide and the
contents of that column are made to fit by linewrapping or clipping at the discretion
of the renderer; "fit" means that the page width remaining after subtracting the "auto"
or fixed width columns is divided equally among the "fit" columns. If insufficient
room remains to hold the contents of the "fit" columns, renderers may linewrap or
clip the contents of the "fit" columns. Note that when the columnwidth is specified
as a percentage, the value is relative to the width of the table, not as a percentage of
the default (which is "auto"). That is, a renderer should try to adjust the width of the
column so that it covers the specified percentage of the entire table width. (See the
note below about multiple values).

width "auto" | length auto
specifies the desired width of the entire table and is intended for visual user agents.
When the value is a percentage value or number without unit, the value is relative
to the horizontal space that a MathML renderer has available, this is the current
target width as used for linebreaking as specified in Section 3.1.7 Linebreaking of
Expressions; this allows the author to specify, for example, a table being full width of
the display. When the value is "auto", the MathML renderer should calculate the table
width from its contents using whatever layout algorithm it chooses.

rowspacing (length) + 1.0ex
specifies how much space to add between rows. (See the note below about multiple
values).

columnspacing (length) + 0.8em
specifies how much space to add between columns. (See the note below about multi-
ple values).

rowlines ("none" | "solid" | "dashed") + none
specifies whether and what kind of lines should be added between each row: "none"
means no lines; "solid" means solid lines; "dashed" means dashed lines (how the
dashes are spaced is implementation dependent). (See the note below about multiple
values).

columnlines ("none" | "solid" | "dashed") + none
specifies whether and what kind of lines should be added between each column:
"none" means no lines; "solid" means solid lines; "dashed" means dashed lines (how
the dashes are spaced is implementation dependent). (See the note below about multi-
ple values).

frame "none" | "solid" | "dashed" none
specifies whether and what kind of lines should be drawn around the table. "none"
means no lines; "solid" means solid lines; "dashed" means dashed lines (how the
dashes are spaced is implementation dependent).

framespacing length, length 0.4em 0.5ex
specifies the additional spacing added between the table and frame, if frame is not
"none". The first value specifies the spacing on the right and left; the second value
specifies the spacing above and below.

3.5 Tabular Math

97

Name values default

equalrows "true" | "false" false
specifies whether to force all rows to have the same total height.

equalcolumns "true" | "false" false
specifies whether to force all columns to have the same total width.

displaystyle "true" | "false" false
specifies the value of displaystyle within each cell, (scriptlevel is not
changed); see Section 3.1.6 Displaystyle and Scriptlevel.

side "left" | "right" | "leftoverlap" | "rightoverlap" right
specifies on what side of the table labels from enclosed mlabeledtr (if any) should
be placed. The variants "leftoverlap" and "rightoverlap" are useful when the table fits
with the allowed width when the labels are omitted, but not when they are included:
in such cases, the labels will overlap the row placed above it if the rowalign for that
row is "top", otherwise it is placed below it.

minlabelspacing length 0.8em
specifies the minimum space allowed between a label and the adjacent cell in the row.

In the above specifications for attributes affecting rows (respectively, columns, or the gaps between rows or
columns), the notation (...)+ means that multiple values can be given for the attribute as a space separated list
(see Section 2.1.5 MathML Attribute Values). In this context, a single value specifies the value to be used for all
rows (resp., columns or gaps). A list of values are taken to apply to corresponding rows (resp., columns or gaps)
in order, that is starting from the top row for rows or first column (left or right, depending on directionality)
for columns. If there are more rows (resp., columns or gaps) than supplied values, the last value is repeated as
needed. If there are too many values supplied, the excess are ignored.

Note that none of the areas occupied by lines frame, rowlines and columnlines, nor the spacing
framespacing, rowspacing or columnspacing, nor the label in mlabeledtr are counted as rows or
columns.

The displaystyle attribute is allowed on the mtable element to set the inherited value of the attribute. If
the attribute is not present, the mtable element sets displaystyle to "false" within the table elements. (See
Section 3.1.6 Displaystyle and Scriptlevel.)

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

<mrow>
 <mo> (</mo>
 <mtable>
 <mtr>
 <mtd> <mn>1</mn> </mtd>
 <mtd> <mn>0</mn> </mtd>
 <mtd> <mn>0</mn> </mtd>
 </mtr>
 <mtr>
 <mtd> <mn>0</mn> </mtd>
 <mtd> <mn>1</mn> </mtd>
 <mtd> <mn>0</mn> </mtd>
 </mtr>
 <mtr>
 <mtd> <mn>0</mn> </mtd>
 <mtd> <mn>0</mn> </mtd>

3 Presentation Markup

98

 <mtd> <mn>1</mn> </mtd>
 </mtr>
 </mtable>
 <mo>) </mo>
</mrow>

This might be rendered as:1 0 00 1 00 0 1
Note that the parentheses must be represented explicitly; they are not part of the mtable element's rendering.
This allows use of other surrounding fences, such as brackets, or none at all.

3.5.2 Row in Table or Matrix <mtr>

3.5.2.1 Description

An mtr element represents one row in a table or matrix. An mtr element is only allowed as a direct sub-
expression of an mtable element, and specifies that its contents should form one row of the table. Each
argument of mtr is placed in a different column of the table, starting at the leftmost column in a LTR context or
rightmost column in a RTL context.

As described in Section 3.5.1 Table or Matrix <mtable>, mtr elements are effectively padded with mtd ele-
ments when they are shorter than other rows in a table.

3.5.2.2 Attributes

mtr elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics style
attributes common to presentation elements.

Name values default

rowalign "top" | "bottom" | "center" | "baseline" | "axis" inherited
overrides, for this row, the vertical alignment of cells specified by the rowalign attribute
on the mtable.

columnalign ("left" | "center" | "right") + inherited
overrides, for this row, the horizontal alignment of cells specified by the columnalign
attribute on the mtable.

groupalign group-alignment-list-list inherited
[this attribute is described with the alignment elements, maligngroup and malignmark,
in Section 3.5.5 Alignment Markers <maligngroup/>, <malignmark/>.]

3.5.3 Labeled Row in Table or Matrix <mlabeledtr>

3.5.3.1 Description

An mlabeledtr element represents one row in a table that has a label on either the left or right side, as
determined by the side attribute. The label is the first child of mlabeledtr, and should be enclosed in an
mtd. The rest of the children represent the contents of the row and are treated identically to the children of mtr;
consequently all of the children must be mtd elements.

3.5 Tabular Math

99

An mlabeledtr element is only allowed as a direct sub-expression of an mtable element. Each argument of
mlabeledtr except for the first argument (the label) is placed in a different column of the table, starting at the
leftmost column.

Note that the label element is not considered to be a cell in the table row. In particular, the label element is not
taken into consideration in the table layout for purposes of width and alignment calculations. For example, in the
case of an mlabeledtr with a label and a single centered mtd child, the child is first centered in the enclosing
mtable, and then the label is placed. Specifically, the child is not centered in the space that remains in the table
after placing the label.

While MathML does not specify an algorithm for placing labels, implementers of visual renderers may find the
following formatting model useful. To place a label, an implementor might think in terms of creating a larger
table, with an extra column on both ends. The columnwidth attributes of both these border columns would
be set to "fit" so that they expand to fill whatever space remains after the inner columns have been laid out.
Finally, depending on the values of side and minlabelspacing, the label is placed in whatever border column
is appropriate, possibly shifted down if necessary, and aligned according to columnalignment.

3.5.3.2 Attributes

The attributes for mlabeledtr are the same as for mtr. Unlike the attributes for the mtable element, attributes
of mlabeledtr that apply to column elements also apply to the label. For example, in a one column table,

<mlabeledtr rowalign='top'>

means that the label and other entries in the row are vertically aligned along their top. To force a particular
alignment on the label, the appropriate attribute would normally be set on the mtd element that surrounds the
label content.

3.5.3.3 Equation Numbering

One of the important uses of mlabeledtr is for numbered equations. In a mlabeledtr, the label repre-
sents the equation number and the elements in the row are the equation being numbered. The side and
minlabelspacing attributes of mtable determine the placement of the equation number.

In larger documents with many numbered equations, automatic numbering becomes important. While auto-
matic equation numbering and automatically resolving references to equation numbers is outside the scope of
MathML, these problems can be addressed by the use of style sheets or other means. The mlabeledtr construc-
tion provides support for both of these functions in a way that is intended to facilitate XSLT processing. The
mlabeledtr element can be used to indicate the presence of a numbered equation, and the first child can
be changed to the current equation number, along with incrementing the global equation number. For cross
references, an id on either the mlabeledtr element or on the first element itself could be used as a target of any
link. Alternatively, in a CSS context, one could use an empty mtd as the first child of mlabeledtr and use CSS
counters and generated content to fill in the equation number using a CSS style such as

body {counter-reset: eqnum;}
mtd.eqnum {counter-increment: eqnum;}
mtd.eqnum:before {content: "(" counter(eqnum) ")"}

3.5.3.4 Example

<mtable>
 <mlabeledtr id='e-is-m-c-square'>
 <mtd>
 <mtext> (2.1) </mtext>

3 Presentation Markup

100

 </mtd>
 <mtd>
 <mrow>
 <mi>E</mi>
 <mo>=</mo>
 <mrow>
 <mi>m</mi>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <msup>
 <mi>c</mi>
 <mn>2</mn>
 </msup>
 </mrow>
 </mrow>
 </mtd>
 </mlabeledtr>
</mtable>

This should be rendered as: (2.1)E = mc2
3.5.4 Entry in Table or Matrix <mtd>

3.5.4.1 Description

An mtd element represents one entry, or cell, in a table or matrix. An mtd element is only allowed as a direct
sub-expression of an mtr or an mlabeledtr element.

The mtd element accepts a single argument possibly being an inferred mrow of multiple children; see Section
3.1.3 Required Arguments.

3.5.4.2 Attributes

mtd elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics style
attributes common to presentation elements.

Name values default

rowspan positive-integer 1
causes the cell to be treated as if it occupied the number of rows specified. The correspond-
ing mtd in the following "rowspan"-1 rows must be omitted. The interpretation corresponds
with the similar attributes for HTML 4.01 tables.

columnspan positive-integer 1
causes the cell to be treated as if it occupied the number of columns specified. The follow-
ing "rowspan"-1 mtds must be omitted. The interpretation corresponds with the similar
attributes for HTML 4.01 tables.

rowalign "top" | "bottom" | "center" | "baseline" | "axis" inherited
specifies the vertical alignment of this cell, overriding any value specified on the containing
mrow and mtable. See the rowalign attribute of mtable.

columnalign "left" | "center" | "right" inherited
specifies the horizontal alignment of this cell, overriding any value specified on the con-
taining mrow and mtable. See the columnalign attribute of mtable.

3.5 Tabular Math

101

Name values default

groupalign group-alignment-list inherited
[this attribute is described with the alignment elements, maligngroup and malignmark,
in Section 3.5.5 Alignment Markers <maligngroup/>, <malignmark/>.]

The rowspan and columnspan attributes can be used around an mtd element that represents the label in a
mlabeledtr element. Also, the label of a mlabeledtr element is not considered to be part of a previous
rowspan and columnspan.

3.5.5 Alignment Markers <maligngroup/>, <malignmark/>

3.5.5.1 Description

Alignment markers are space-like elements (see Section 3.2.7 Space <mspace/>) that can be used to vertically
align specified points within a column of MathML expressions by the automatic insertion of the necessary
amount of horizontal space between specified sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with
vertical alignment of the coefficients and variables of each term, by inserting spacing somewhat like that shown
here:

 8.44x + 55 y = 0
 3.1 x - 0.7y = -1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

 8.44x + 55y = 0
 3.1x - 0.7y = -1.1

For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the
rhythm of pronunciation so that it is the same for several sub-expressions in a column, by the insertion of the
appropriate time delays in place of the extra horizontal spacing described here.

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table
elements (i.e. as the mtd elements) of one column of an mtable. To avoid confusion, the term "table cell" rather
than "table element" will be used in the remainder of this section.

All interactions between alignment elements are limited to the mtable column they arise in. That is, every
column of a table specified by an mtable element acts as an "alignment scope" that contains within it all
alignment effects arising from its contents. It also excludes any interaction between its own alignment elements
and the alignment elements inside any nested alignment scopes it might contain.

The reason mtable columns are used as alignment scopes is that they are the only general way in MathML to
arrange expressions into vertical columns. Future versions of MathML may provide an malignscope element
that allows an alignment scope to be created around any MathML element, but even then, table columns would
still sometimes need to act as alignment scopes, and since they are not elements themselves, but rather are made
from corresponding parts of the content of several mtr elements, they could not individually be the content of an
alignment scope element.

An mtable element can be given the attribute alignmentscope="false" to cause its columns not to act as
alignment scopes. This is discussed further at the end of this section. Otherwise, the discussion in this section
assumes that this attribute has its default value of "true".

3 Presentation Markup

102

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned with
corresponding points in other expressions, and the beginning of each alignment group of sub-expressions that
can be horizontally shifted as a unit to effect the alignment. Each alignment group must contain one alignment
point. It is also necessary to specify which expressions in the column have no alignment groups at all, but are
affected only by the ordinary column alignment for that column of the table, i.e. by the columnalign attribute,
described elsewhere.

The alignment groups start at the locations of invisible maligngroup elements, which are rendered with zero
width when they occur outside of an alignment scope, but within an alignment scope are rendered with just
enough horizontal space to cause the desired alignment of the alignment group that follows them. A simple
algorithm by which a MathML application can achieve this is given later. In the example above, each equation
would have one maligngroup element before each coefficient, variable, and operator on the left-hand side, one
before the = sign, and one before the constant on the right-hand side.

In general, a table cell containing n maligngroup elements contains n alignment groups, with the ith group
consisting of the elements entirely after the ith maligngroup element and before the (i+1)-th; no element within
the table cell's content should occur entirely before its first maligngroup element.

Note that the division into alignment groups does not necessarily fit the nested expression structure of the
MathML expression containing the groups — that is, it is permissible for one alignment group to consist of the
end of one mrow, all of another one, and the beginning of a third one, for example. This can be seen in the
MathML markup for the present example, given at the end of this section.

The nested expression structure formed by mrows and other layout schemata should reflect the mathematical
structure of the expression, not the alignment-group structure, to make possible optimal renderings and better
automatic interpretations; see the discussion of proper grouping in section Section 3.3.1 Horizontally Group
Sub-Expressions <mrow>. Insertion of alignment elements (or other space-like elements) should not alter the
correspondence between the structure of a MathML expression and the structure of the mathematical expression
it represents.

Although alignment groups need not coincide with the nested expression structure of layout schemata, there are
nonetheless restrictions on where an maligngroup element is allowed within a table cell. The maligngroup
element may only be contained within elements (directly or indirectly) of the following types (which are them-
selves contained in the table cell):

• an mrow element, including an inferred mrow such as the one formed by a multi-child mtd element, but •
excluding mrow which contains a change of direction using the dir attribute;

• an mstyle element, but excluding those which change direction using the dir attribute;•

• an mphantom element;•

• an mfenced element;•

• an maction element, though only its selected sub-expression is checked;•

• a semantics element.•

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding com-
plexities involving things like overscripts, radical signs and fraction bars. They also ensure that a simple
algorithm suffices to accomplish the desired alignment.

Note that some positions for an maligngroup element, although legal, are not useful, such as an maligngroup
element that is an argument of an mfenced element. Similarly, when inserting an maligngroup element in
an element whose arguments have positional significance, it is necessary to introduce a new mrow element

3.5 Tabular Math

103

containing just the maligngroup element and the child element it precedes in order to preserve the proper
expression structure. For example, to insert an maligngroup before the denominator child of an mfrac ele-
ment, it is necessary to enclose the maligngroup and the denominator in an mrow to avoid introducing an
illegal third child in the mfrac. In general, this will be necessary except when the maligngroup element is
inserted directly into an mrow or into an element that can form an inferred mrow from its contents. See the
warning about the legal grouping of "space-like elements" in Section 3.2.7 Space <mspace/> for an analogous
example involving malignmark.

For the table cells that are divided into alignment groups, every element in their content must be part of exactly
one alignment group, except for the elements from the above list that contain maligngroup elements inside
them and the maligngroup elements themselves. This means that, within any table cell containing alignment
groups, the first complete element must be an maligngroup element, though this may be preceded by the start
tags of other elements.

This requirement removes a potential confusion about how to align elements before the first maligngroup
element, and makes it easy to identify table cells that are left out of their column's alignment process entirely.

Note that it is not required that the table cells in a column that are divided into alignment groups each contain the
same number of groups. If they don't, zero-width alignment groups are effectively added on the right side (or left
side, in a RTL context) of each table cell that has fewer groups than other table cells in the same column.

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contain no maligngroup elements.
Expressions with no alignment groups are aligned using only the columnalign attribute that applies to the table
column as a whole, and are not affected by the groupalign attribute described below. If such an expression is
wider than the column width needed for the table cells containing alignment groups, all the table cells containing
alignment groups will be shifted as a unit within the column as described by the columnalign attribute for
that column. For example, a column heading with no internal alignment could be added to the column of two
equations given above by preceding them with another table row containing an mtext element for the heading,
and using the default columnalign="center" for the table, to produce:

equations with aligned variables
 8.44x + 55 y = 0
 3.1 x - 0.7y = -1.1

or, with a shorter heading,

 some equations
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using <malignmark/>

Each alignment group's alignment point can either be specified by an malignmark element anywhere within
the alignment group (except within another alignment scope wholly contained inside it), or it is determined
automatically from the groupalign attribute. The groupalign attribute can be specified on the group's pre-
ceding maligngroup element or on its surrounding mtd, mtr, or mtable elements. In typical cases, using the
groupalign attribute is sufficient to describe the desired alignment points, so no malignmark elements need to
be provided.

The malignmark element indicates that the alignment point should occur on the right edge of the preceding
element, or the left edge of the following element or character, depending on the edge attribute of malignmark.
Note that it may be necessary to introduce an mrow to group an malignmark element with a neighboring

3 Presentation Markup

104

element, in order not to alter the argument count of the containing element. (See the warning about the legal
grouping of "space-like elements" in Section 3.2.7 Space <mspace/>).

When an malignmark element is provided within an alignment group, it can occur in an arbitrarily deeply
nested element within the group, as long as it is not within a nested alignment scope. It is not subject to the same
restrictions on location as maligngroup elements. However, its immediate surroundings need to be such that
the element to its immediate right or left (depending on its edge attribute) can be unambiguously identified. If
no such element is present, renderers should behave as if a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and
Y to the immediate right of X, whenever X and Y are successive arguments of one (possibly inferred) mrow
element, with X coming before Y (in a LTR context; with X coming after Y in a RTL context). In the case
of mfenced elements, MathML applications should evaluate this relation as if the mfenced element had been
replaced by the equivalent expanded form involving mrow. Similarly, an maction element should be treated as
if it were replaced by its currently selected sub-expression. In all other cases, no relation of "to the immediate
left or right" is defined for two elements X and Y. However, in the case of content elements interspersed in pre-
sentation markup, MathML applications should attempt to evaluate this relation in a sensible way. For example,
if a renderer maintains an internal presentation structure for rendering content elements, the relation could be
evaluated with respect to that. (See Chapter 4 Content Markup and Chapter 5 Mixing Markup Languages for
Mathematical Expressions for further details about mixing presentation and content markup.)

malignmark elements are allowed to occur within the content of token elements, such as mn, mi, or mtext.
When this occurs, the character immediately before or after the malignmark element will carry the alignment
point; in all other cases, the element to its immediate left or right will carry the alignment point. The rationale
for this is that it is sometimes desirable to align on the edges of specific characters within multi-character token
elements.

If there is more than one malignmark element in an alignment group, all but the first one will be ignored.
MathML applications may wish to provide a mode in which they will warn about this situation, but it is not an
error, and should trigger no warnings by default. The rationale for this is that it would be inconvenient to have to
remove all unnecessary malignmark elements from automatically generated data, in certain cases, such as when
they are used to specify alignment on "decimal points" other than the '.' character.

3.5.5.5 <malignmark/> Attributes

malignmark elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathe-
matics style attributes common to presentation elements (however, neither mathcolor nor mathbackground
have any effect).

Name values default

edge "left" | "right" left
see the discussion below.

The edge attribute specifies whether the alignment point will be found on the left or right edge of some element
or character. The precise location meant by "left edge" or "right edge" is discussed below. If edge="right", the
alignment point is the right edge of the element or character to the immediate left of the malignmark element.
If edge="left", the alignment point is the left edge of the element or character to the immediate right of the
malignmark element. Note that the attribute refers to the choice of edge rather than to the direction in which to
look for the element whose edge will be used.

For malignmark elements that occur within the content of MathML token elements, the preceding or following
character in the token element's content is used; if there is no such character, a zero-width character is effectively
inserted for the purpose of carrying the alignment point on its edge. For all other malignmark elements, the

3.5 Tabular Math

105

preceding or following element is used; if there is no such element, a zero-width element is effectively inserted
to carry the alignment point.

The precise definition of the "left edge" or "right edge" of a character or glyph (e.g. whether it should coincide
with an edge of the character's bounding box) is not specified by MathML, but is at the discretion of the
renderer; the renderer is allowed to let the edge position depend on the character's context as well as on the
character itself.

For proper alignment of columns of numbers (using groupalign values of "left", "right", or "decimalpoint"),
it is likely to be desirable for the effective width (i.e. the distance between the left and right edges) of decimal
digits to be constant, even if their bounding box widths are not constant (e.g. if "1" is narrower than other digits).
For other characters, such as letters and operators, it may be desirable for the aligned edges to coincide with the
bounding box.

The "left edge" of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to
render the element or group, except that explicit space represented by mspace or mtext elements should also
count as "glyphs" in this context, as should glyphs that would be drawn if not for mphantom elements around
them. The "right edge" of an element or alignment group is defined similarly.

3.5.5.6 <maligngroup/> Attributes

maligngroup elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathe-
matics style attributes common to presentation elements (however, neither mathcolor nor mathbackground
have any effect).

Name values default

groupalign "left" | "center" | "right" | "decimalpoint" inherited
see the discussion below.

maligngroup has one attribute, groupalign, which is used to determine the position of its group's alignment
point when no malignmark element is present. The following discussion assumes that no malignmark element
is found within a group.

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment
groups in each table cell; thus there are 7 columns of alignment groups, with 2 groups, one above the other, in
each column. These columns of alignment groups should be given the 7 groupalign values "decimalpoint left
left decimalpoint left left decimalpoint", in that order. How to specify this list of values for a table cell or table
column as a whole, using attributes on elements surrounding the maligngroup element is described later.

If groupalign is "left", "right", or "center", the alignment point is defined to be at the group's left edge, at its
right edge, or halfway between these edges, respectively. The meanings of "left edge" and "right edge" are as
discussed above in relation to malignmark.

If groupalign is "decimalpoint", the alignment point is the right edge of the character immediately before
the left-most 'decimal point', i.e. matching the character specified by the decimalpoint attribute of mstyle
(default ".", U+002E) in the first mn element found along the alignment group's baseline. More precisely, the
alignment group is scanned recursively, depth-first, for the first mn element, descending into all arguments
of each element of the types mrow (including inferred mrows), mstyle, mpadded, mphantom, menclose,
mfenced, or msqrt, descending into only the first argument of each "scripting" element (msub, msup, msubsup,
munder, mover, munderover, mmultiscripts) or of each mroot or semantics element, descending into
only the selected sub-expression of each maction element, and skipping the content of all other elements. The
first mn so found always contains the alignment point, which is the right edge of the last character before the first
decimal point in the content of the mn element. If there is no decimal point in the mn element, the alignment point

3 Presentation Markup

106

is the right edge of the last character in the content. If the decimal point is the first character of the mn element's
content, the right edge of a zero-width character inserted before the decimal point is used. If no mn element is
found, the right edge of the entire alignment group is used (as for groupalign="right").

In order to permit alignment on decimal points in cn elements, a MathML application can convert a content
expression into a presentation expression that renders the same way before searching for decimal points as
described above.

Characters other than "." can be used as "decimal points" for alignment by using mstyle; more arbitrary
alignment points can chosen by embedding malignmark elements within the mn token's content itself.

For any of the groupalign values, if an explicit malignmark element is present anywhere within the group,
the position it specifies (described earlier) overrides the automatic determination of alignment point from the
groupalign value.

3.5.5.7 Inheritance of groupalign values

It is not usually necessary to put a groupalign attribute on every maligngroup element. Since this attribute
is usually the same for every group in a column of alignment groups to be aligned, it can be inherited from
an attribute on the mtable that was used to set up the alignment scope as a whole, or from the mtr or mtd
elements surrounding the alignment group. It is inherited via an "inheritance path" that proceeds from mtable
through successively contained mtr, mtd, and maligngroup elements. There is exactly one element of each of
these kinds in this path from an mtable to any alignment group inside it. In general, the value of groupalign
will be inherited by any given alignment group from the innermost element that surrounds the alignment group
and provides an explicit setting for this attribute. For example, if an mtable element specifies values for
groupalign and a maligngroup element within the table also specifies an explicit groupalign value, then
then the value from the maligngroup takes priority.

Note, however, that each mtd element needs, in general, a list of groupalign values, one for each
maligngroup element inside it (from left to right, in an LTR context, or from right to left in an RTL context),
rather than just a single value. Furthermore, an mtr or mtable element needs, in general, a list of lists of
groupalign values, since it spans multiple mtable columns, each potentially acting as an alignment scope.
Such lists of group-alignment values are specified using the following syntax rules:

group-alignment = "left" | "right" | "center" | "decimalpoint"
group-alignment-list = group-alignment +
group-alignment-list-list = ("{" group-alignment-list "}") +

As described in Section 2.1.5 MathML Attribute Values, | separates alternatives; + represents optional repetition
(i.e. 1 or more copies of what precedes it), with extra values ignored and the last value repeated if necessary to
cover additional table columns or alignment group columns; '{' and '}' represent literal braces; and (and)
are used for grouping, but do not literally appear in the attribute value.

The permissible values of the groupalign attribute of the elements that have this attribute are specified using
the above syntax definitions as follows:

Element type groupalign attribute syntax default value

mtable group-alignment-list-list {left}
mtr group-alignment-list-list inherited from mtable attribute
mlabeledtr group-alignment-list-list inherited from mtable attribute
mtd group-alignment-list inherited from within mtr attribute
maligngroup group-alignment inherited from within mtd attribute

3.5 Tabular Math

107

In the example near the beginning of this section, the group alignment values could be specified on every mtd
element using groupalign = "decimalpoint left left decimalpoint left left decimalpoint", or on every mtr ele-
ment using groupalign = "{decimalpoint left left decimalpoint left left decimalpoint}", or (most conveniently)
on the mtable as a whole using groupalign = "{decimalpoint left left decimalpoint left left decimalpoint}",
which provides a single braced list of group-alignment values for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this
section. To repeat the example, the desired rendering is:8.44x + 55 y = 03.1 x − 0.7y = −1.1
One way to represent that in MathML is:

<mtable groupalign=
 "{decimalpoint left left decimalpoint left left decimalpoint}">
 <mtr>
 <mtd>
 <mrow>
 <mrow>
 <mrow>
 <maligngroup/>
 <mn> 8.44 </mn>
 <mo> ⁢<!--INVISIBLE TIMES--> </mo>
 <maligngroup/>
 <mi> x </mi>
 </mrow>
 <maligngroup/>
 <mo> + </mo>
 <mrow>
 <maligngroup/>
 <mn> 55 </mn>
 <mo> ⁢<!--INVISIBLE TIMES--> </mo>
 <maligngroup/>
 <mi> y </mi>
 </mrow>
 </mrow>
 <maligngroup/>
 <mo> = </mo>
 <maligngroup/>
 <mn> 0 </mn>
 </mrow>
 </mtd>
 </mtr>
 <mtr>
 <mtd>
 <mrow>
 <mrow>
 <mrow>
 <maligngroup/>
 <mn> 3.1 </mn>
 <mo> ⁢<!--INVISIBLE TIMES--> </mo>
 <maligngroup/>
 <mi> x </mi>

3 Presentation Markup

108

 </mrow>
 <maligngroup/>
 <mo> - </mo>
 <mrow>
 <maligngroup/>
 <mn> 0.7 </mn>
 <mo> ⁢<!--INVISIBLE TIMES--> </mo>
 <maligngroup/>
 <mi> y </mi>
 </mrow>
 </mrow>
 <maligngroup/>
 <mo> = </mo>
 <maligngroup/>
 <mrow>
 <mo> - </mo>
 <mn> 1.1 </mn>
 </mrow>
 </mrow>
 </mtd>
 </mtr>
</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements maligngroup and malignmark can occur outside of alignment scopes, where they are
ignored. The rationale behind this is that in situations in which MathML is generated, or copied from another
document, without knowing whether it will be placed inside an alignment scope, it would be inconvenient for
this to be an error.

An mtable element can be given the attribute alignmentscope="false" to cause its columns not to act as
alignment scopes. In general, this attribute has the syntax ("true" | "false") +; if its value is a list of
Boolean values, each Boolean value applies to one column, with the last value repeated if necessary to cover
additional columns, or with extra values ignored. Columns that are not alignment scopes are part of the align-
ment scope surrounding the mtable element, if there is one. Use of alignmentscope="false" allows nested
tables to contain malignmark elements for aligning the inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not
specify how content elements should be rendered. However, many MathML applications are likely to find it
convenient to internally convert content elements to presentation elements that render the same way. Thus, as
a general rule, even if a renderer does not perform such conversions internally, it is recommended that the
alignment elements should be processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment elements with the
matrix content element, since this element may or may not be internally converted to an expression containing
an mtable element for rendering. To partially resolve this ambiguity, it is suggested, but not required, that if
the matrix element is converted to an expression involving an mtable element, that the mtable element be
given the attribute alignmentscope="false", which will make the interaction of the matrix element with the
alignment elements no different than that of a generic presentation element (in particular, it will allow it to
contain malignmark elements that operate within the alignment scopes created by the columns of an mtable
that contains the matrix element in one of its table cells).

The effect of alignment elements within table cells that have non-default values of the columnspan or rowspan
attributes is not specified, except that such use of alignment elements is not an error. Future versions of MathML
may specify the behavior of alignment elements in such table cells.

3.5 Tabular Math

109

The effect of possible linebreaking of an mtable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML renderer can perform the alignment specified in this section is given
here. Since the alignment specification is deterministic (except for the definition of the left and right edges of
a character), any correct MathML alignment algorithm will have the same behavior as this one. Each mtable
column (alignment scope) can be treated independently; the algorithm given here applies to one mtable column,
and takes into account the alignment elements, the groupalign attribute described in this section, and the
columnalign attribute described under mtable (Section 3.5.1 Table or Matrix <mtable>).

First, a rendering is computed for the contents of each table cell in the column, using zero width for
all maligngroup and malignmark elements. The final rendering will be identical except for horizontal
shifts applied to each alignment group and/or table cell. The positions of alignment points specified by any
malignmark elements are noted, and the remaining alignment points are determined using groupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted,
allowing the width of the group on each side of the alignment point (left and right) to be determined. The sum
of these two "side-widths", i.e. the sum of the widths to the left and right of the alignment point, will equal the
width of the alignment group.

Second, each column of alignment groups is scanned. The ith scan covers the ith alignment group in each table
cell containing any alignment groups. Table cells with no alignment groups, or with fewer than i alignment
groups, are ignored. Each scan computes two maximums over the alignment groups scanned: the maximum
width to the left of the alignment point, and the maximum width to the right of the alignment point, of any
alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width,
which will be the width of each table cell containing alignment groups. Call the maximum number of alignment
groups in one cell n; each such cell is divided into 2n horizontally adjacent sections, called L(i) and R(i) for i
from 1 to n, using the 2n maximum side-widths computed above; for each i, the width of all sections called L(i)
is the maximum width of any cell's ith alignment group to the left of its alignment point, and the width of all
sections called R(i) is the maximum width of any cell's ith alignment group to the right of its alignment point.

Each alignment group is then shifted horizontally as a block to a unique position that places: in the section called
L(i) that part of the ith group to the left of its alignment point; in the section called R(i) that part of the ith group
to the right of its alignment point. This results in the alignment point of each ith group being on the boundary
between adjacent sections L(i) and R(i), so that all alignment points of ith groups have the same horizontal
position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and
may be different for each cell, and different from the single width used for cells containing alignment groups.
The maximum of all the cell widths (for both kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the value of the columnalign
attribute of the innermost surrounding mtable, mtr, or mtd element that has an explicit value for it, as described
in the sections on those elements. This may mean that the cells containing alignment groups will be shifted
within their column, in addition to their alignment groups having been shifted within the cells as described
above, but since each such cell has the same width, it will be shifted the same amount within the column, thus
maintaining the vertical alignment of the alignment points of the corresponding alignment groups in each cell.

3 Presentation Markup

110

3.6 Elementary Math

Mathematics used in the lower grades such as two-dimensional addition, multiplication, and long division tends
to be tabular in nature. However, the specific notations used varies among countries much more than for higher
level math. Furthermore, elementary math often presents examples in some intermediate state and MathML must
be able to capture these intermediate or intentionally missing partial forms. Indeed, these constructs represent
memory aids or procedural guides, as much as they represent ‘mathematics’.

The elements used for basic alignments in elementary math are:

mstack

align rows of digits and operators
msgroup

groups rows with similar alignment
msrow

groups digits and operators into a row
msline

draws lines between rows of the stack
mscarries

annotates the following row with optional borrows/carries and/or crossouts
mscarry

a borrow/carry and/or crossout for a single digit
mlongdiv

specifies a divisor and a quotient for long division, along with a stack of the intermediate computations

mstack and mlongdiv are the parent elements for all elementary math layout. Any children of mstack,
mlongdiv, and msgroup, besides msrow, msgroup, mscarries and msline, are treated as if implicitly sur-
rounded by an msrow (See Section 3.6.4 Rows in Elementary Math <msrow> for more details about rows).

Since the primary use of these stacking constructs is to stack rows of numbers aligned on their digits, and since
numbers are always formatted left-to-right, the columns of an mstack are always processed left-to-right; the
overall directionality in effect (ie. the dir attribute) does not affect to the ordering of display of columns or
carries in rows and, in particular, does not affect the ordering of any operators within a row (See Section 3.1.5
Directionality).

These elements are described in this section followed by examples of their use. In addition to two-dimensional
addition, subtraction, multiplication, and long division, these elements can be used to represent several notations
used for repeating decimals.

A very simple example of two-dimensional addition is shown below:4 2 4+ 3 3
The MathML for this is:

<mstack>
 <mn>424</mn>
 <msrow> <mo>+</mo> <mn>33</mn> </msrow>
 <msline/>
</mstack>

Many more examples are given in Section 3.6.8 Elementary Math Examples.

3.6 Elementary Math

111

3.6.1 Stacks of Characters <mstack>

3.6.1.1 Description

mstack is used to lay out rows of numbers that are aligned on each digit. This is common in many elementary
math notations such as 2D addition, subtraction, and multiplication.

The children of an mstack represent rows, or groups of them, to be stacked each below the previous row; there
can be any number of rows. An msrow represents a row; an msgroup groups a set of rows together so that
their horizontal alignment can be adjusted together; an mscarries represents a set of carries to be applied to
the following row; an msline represents a line separating rows. Any other element is treated as if implicitly
surrounded by msrow.

Each row contains ‘digits’ that are placed into columns. (see Section 3.6.4 Rows in Elementary Math <msrow>
for further details). The stackalign attribute together with the position and shift attributes of msgroup,
mscarries, and msrow determine to which column a character belongs.

The width of a column is the maximum of the widths of each ‘digit’ in that column — carries do not participate
in the width calculation; they are treated as having zero width. If an element is too wide to fit into a column,
it overflows into the adjacent column(s) as determined by the charalign attribute. If there is no character in a
column, its width is taken to be the width of a 0 in the current language (in many fonts, all digits have the same
width).

The method for laying out an mstack is:

1. The ‘digits’ in a row are determined.1.

2. All of the digits in a row are initially aligned according to the stackalign value.2.

3. Each row is positioned relative to that alignment based on the position attribute (if any) that controls 3.
that row.

4. The maximum width of the digits in a column are determined and shorter and wider entries in that column 4.
are aligned according to the charalign attribute.

5. The width and height of the mstack element are computed based on the rows and columns. Any overflow 5.
from a column is not used as part of that computation.

6. The baseline of the mstack element is determined by the align attribute.6.

3.6.1.2 Attributes

mstack elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

align ("top" | "bottom" | "center" | "baseline" |
"axis"), rownumber?

baseline

specifies the vertical alignment of the mstack with respect to its environment. The legal
values and their meanings are the same as that for mtable's align attribute.

stackalign "left" | "center" | "right" | "decimalpoint" decimalpoint
specifies which column is used to horizontally align the rows. For "left", rows are aligned
flush on the left; similarly for "right", rows are flush on the right; for "center", the mid-
dle column (or to the right of the middle, for an even number of columns) is used for
alignment. Rows with non-zero position, or affected by a shift, are treated as if the
requisite number of empty columns were added on the appropriate side; see Section 3.6.3
Group Rows with Similiar Positions <msgroup> and Section 3.6.4 Rows in Elementary

3 Presentation Markup

112

Name values default

Math <msrow>. For "decimalpoint", the column used is the left-most column in each row
that contains the decimalpoint character specified using the decimalpoint attribute of
mstyle (default "."). If there is no decimalpoint character in the row, an implied decimal is
assumed on the right of the first number in the row; See "decimalpoint" for a discussion of
"decimalpoint".

charalign "left" | "center" | "right" right
specifies the horizontal alignment of digits within a column. If the content is larger than
the column width, then it overflows the opposite side from the alignment. For example, for
"right", the content will overflow on the left side; for center, it overflows on both sides.
This excess does not participate in the column width calculation, nor does it participate in
the overall width of the mstack. In these cases, authors should take care to avoid collisions
between column overflows.

charspacing length | "loose" | "medium" | "tight" medium
specifies the amount of space to put between each column. Larger spacing might be useful
if carries are not placed above or are particularly wide. The keywords "loose", "medium",
and "tight" automatically adjust spacing to when carries or other entries in a column are
wide. The three values allow authors to some flexibility in choosing what the layout looks
like without having to figure out what values works well. In all cases, the spacing between
columns is a fixed amount and does not vary between different columns.

3.6.2 Long Division <mlongdiv>

3.6.2.1 Description

Long division notation varies quite a bit around the world, although the heart of the notation is often similar.
mlongdiv is similar to mstack and used to layout long division. The first two children of mlongdiv are the
divisor and the result of the division, in that order. The remaining children are treated as if they were children of
mstack. The placement of these and the lines and separators used to display long division are controlled by the
longdivstyle attribute.

The result or divisor may be an elementary math element or may be none. In particular, if msgroup is used, the
elements in that group may or may not form their own mstack or be part of the dividend's mstack, depending
upon the value of the longdivstyle attribute. For example, in the US style for division, the result is treated
as part of the dividend's mstack, but divisor is not. MathML does not specify when the result and divisor form
their own mstack, nor does it specify what should happen if msline or other elementary math elements are
used for the result or divisor and they do not participate in the dividend's mstack layout.

In the remainder of this section on elementary math, anything that is said about mstack applies to mlongdiv
unless stated otherwise.

3.6.2.2 Attributes

mlongdiv elements accept all of the attributes that mstack elements accept (including those specified in Sec-
tion 3.1.10 Mathematics style attributes common to presentation elements), along with the attribute listed below.

The values allowed for longdivstyle are open-ended. Conforming renderers may ignore any value they do not
handle, although renderers are encouraged to render as many of the values listed below as possible. Any rules
drawn as part of division layout should be drawn using the color specified by mathcolor.

3.6 Elementary Math

113

Name values default

longdivstyle "lefttop" | "stackedrightright" | "mediumstackedrightright" |
"shortstackedrightright" | "righttop" | "left/\right" | "left)(right" | ":right=right" |
"stackedleftleft" | "stackedleftlinetop"

lefttop

Controls the style of the long division layout. The names are meant as a rough mnemonic
that describes the position of the divisor and result in relation to the dividend.

See Section 3.6.8.3 Long Division for examples of how these notations are drawn. The values listed above are
used for long division notations in different countries around the world:

"lefttop"
a notation that is commonly used in the United States, Great Britain, and elsewhere

"stackedrightright"
a notation that is commonly used in France and elsewhere

"mediumrightright"
a notation that is commonly used in Russia and elsewhere

"shortstackedrightright"
a notation that is commonly used in Brazil and elsewhere

"righttop"
a notation that is commonly used in China, Sweden, and elsewhere

"left/\right"
a notation that is commonly used in Netherlands

"left)(right"
a notation that is commonly used in India

":right=right "
a notation that is commonly used in Germany

"stackedleftleft "
a notation that is commonly used in Arabic countries

"stackedleftlinetop"
a notation that is commonly used in Arabic countries

3.6.3 Group Rows with Similiar Positions <msgroup>

3.6.3.1 Description

msgroup is used to group rows inside of the mstack and mlongdiv elements that have a similar position
relative to the alignment of stack. If not explicitly given, the children representing the stack in mstack and
mlongdiv are treated as if they are implicitly surrounded by an msgroup element.

3.6.3.2 Attributes

msgroup elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

position integer 0
specifies the horizontal position of the rows within this group relative the position determined
by the containing msgroup (according to its position and shift attributes). The resulting
position value is relative to the column specified by stackalign of the containing mstack or
mlongdiv. Positive values move each row towards the tens digit, like multiplying by a power
of 10, effectively padding with empty columns on the right; negative values move towards the

3 Presentation Markup

114

Name values default

ones digit, effectively padding on the left. The decimal point is counted as a column and should
be taken into account for negative values.

shift integer 0
specifies an incremental shift of position for successive children (rows or groups) within this
group. The value is interpreted as with position, but specifies the position of each child (except
the first) with respect to the previous child in the group.

3.6.4 Rows in Elementary Math <msrow>

3.6.4.1 Description

An msrow represents a row in an mstack. In most cases it is implied by the context, but is useful explicitly for
putting multiple elements in a single row, such as when placing an operator "+" or "-" alongside a number within
an addition or subtraction.

If an mn element is a child of msrow (whether implicit or not), then the number is split into its digits and the
digits are placed into successive columns. Any other element, with the exception of mstyle is treated effectively
as a single digit occupying the next column. An mstyle is treated as if its children were directly the children of
the msrow, but with their style affected by the attributes of the mstyle. The empty element none may be used to
create an empty column.

Note that a row is considered primarily as if it were a number, which are always displayed left-to-right, and
so the directionality used to display the columns is always left-to-right; textual bidirectionality within token
elements (other than mn) still applies, as does the overall directionality within any children of the msrow (which
end up treated as single digits); see Section 3.1.5 Directionality.

3.6.4.2 Attributes

msrow elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

Name values default

position integer 0
specifies the horizontal position of the rows within this group relative the position determined
by the containing msgroup (according to its position and shift attributes). The resulting
position value is relative to the column specified by stackalign of the containing mstack or
mlongdiv. Positive values move each row towards the tens digit, like multiplying by a power
of 10, effectively padding with empty columns on the right; negative values move towards the
ones digit, effectively padding on the left. The decimal point is counted as a column and should
be taken into account for negative values.

3.6.5 Carries, Borrows, and Crossouts <mscarries>

3.6.5.1 Description

The mscarries element is used for various annotations such as carries, borrows, and crossouts that occur in
elementary math. The children are associated with elements in the following row of the mstack. It is an error for
mscarries to be the last element of an mstack or mlongdiv element. Each child of the mscarries applies
to the same column in the following row. As these annotations are used to adorn what are treated as numbers,
the attachment of carries to columns proceeds from left-to-right; The overall directionality does not apply to the
ordering of the carries, although it may apply to the contents of each carry; see Section 3.1.5 Directionality.

3.6 Elementary Math

115

Each child of mscarries other than mscarry or none is treated as if implicitly surrounded by mscarry;
the element none is used when no carry for a particular column is needed. The mscarries element
sets displaystyle to "false", and increments scriptlevel by 1, so the children are typically displayed
in a smaller font. (See Section 3.1.6 Displaystyle and Scriptlevel.) It also changes the default value of
scriptsizemultiplier. The effect is that the inherited value of scriptsizemultiplier should still over-
ride the default value, but the default value, inside mscarries, should be "0.6". scriptsizemultiplier can
be set on the mscarries element, and the value should override the inherited value as usual.

If two rows of carries are adjacent to each other, the first row of carries annotates the second (following) row as
if the second row had location="n". This means that the second row, even if it does not draw, visually uses
some (undefined by this specification) amount of space when displayed.

3.6.5.2 Attributes

mscarries elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathe-
matics style attributes common to presentation elements.

Name values default

position integer 0
specifies the horizontal position of the rows within this group relative the
position determined by the containing msgroup (according to its position
and shift attributes). The resulting position value is relative to the column
specified by stackalign of the containing mstack or mlongdiv. The inter-
pretation of the value is the same as position for msgroup or msrow, but
it alters the association of each carry with the column below. For example,
position=1 would cause the rightmost carry to be associated with the second
digit column from the right.

location "w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw" n
specifies the location of the carry or borrow relative to the character below it in
the associated column. Compass directions are used for the values; the default
is to place the carry above the character.

crossout ("none" | "updiagonalstrike" |
"downdiagonalstrike" | "verticalstrike" |
"horizontalstrike")*

none

specifies how the column content below each carry is "crossed out"; one or
more values may be given and all values are drawn. If "none" is given with
other values, it is ignored. See Section 3.6.8 Elementary Math Examples for
examples of the different values. The crossout is only applied for columns
which have a corresponding mscarry. The crossouts should be drawn using
the color specified by mathcolor.

scriptsizemultiplier number inherited (0.6)
specifies the factor to change the font size by. See Section 3.1.6 Displaystyle
and Scriptlevel for a description of how this works with the scriptsize
attribute.

3.6.6 A Single Carry <mscarry>

3.6.6.1 Description

mscarry is used inside of mscarries to represent the carry for an individual column. A carry is treated as if
its width were zero; it does not participate in the calculation of the width of its corresponding column; as such,

3 Presentation Markup

116

it may extend beyond the column boundaries. Although it is usually implied, the element may be used explicitly
to override the location and/or crossout attributes of the containing mscarries. It may also be useful
with none as its content in order to display no actual carry, but still enable a crossout due to the enclosing
mscarries to be drawn for the given column.

3.6.6.2 Attributes

The mscarry element accepts the attributes listed below in addition to those specified in Section 3.1.10 Mathe-
matics style attributes common to presentation elements.

Name values default

location "w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw" inherited
specifies the location of the carry or borrow relative to the character in the corresponding
column in the row below it. Compass directions are used for the values.

crossout ("none" | "updiagonalstrike" | "downdiagonalstrike" |
"verticalstrike" | "horizontalstrike")*

inherited

specifies how the column content associated with the carry is "crossed out"; one or more values
may be given and all values are drawn. If "none" is given with other values, it is essentially
ignored. The crossout should be drawn using the color specified by mathcolor.

3.6.7 Horizontal Line <msline/>

3.6.7.1 Description

msline draws a horizontal line inside of a mstack element. The position, length, and thickness of the line are
specified as attributes. If the length is specified, the line is positioned and drawn as if it were a number with the
given number of digits.

3.6.7.2 Attributes

msline elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathemat-
ics style attributes common to presentation elements. The line should be drawn using the color specified by
mathcolor.

Name values default

position integer 0
specifies the horizontal position of the rows within this group relative the position
determined by the containing msgroup (according to its position and shift attrib-
utes). The resulting position value is relative to the column specified by stackalign
of the containing mstack or mlongdiv. Positive values moves towards the tens digit
(like multiplying by a power of 10); negative values moves towards the ones digit.
The decimal point is counted as a column and should be taken into account for
negative values. Note that since the default line length spans the entire mstack, the
position has no effect unless the length is specified as non-zero.

length unsigned-integer 0
Specifies the number of columns that should be spanned by the line. A value of '0' (the
default) means that all columns in the row are spanned (in which case position and
stackalign have no effect).

leftoverhang length 0
Specifies an extra amount that the line should overhang on the left of the leftmost
column spanned by the line.

3.6 Elementary Math

117

Name values default

rightoverhang length 0
Specifies an extra amount that the line should overhang on the right of the rightmost
column spanned by the line.

mslinethickness length | "thin" | "medium" | "thick" medium
Specifies how thick the line should be drawn. The line should have height=0, and
depth=mslinethickness so that the top of the msline is on the baseline of the sur-
rounding context (if any). (See Section 3.3.2 Fractions <mfrac> for discussion of the
thickness keywords "medium", "thin" and "thick".)

3.6.8 Elementary Math Examples

3.6.8.1 Addition and Subtraction

Two-dimensional addition, subtraction, and multiplication typically involve numbers, carrries/borrows, lines, and
the sign of the operation.

Notice that the msline spans all of the columns and that none is used to make the "+" appear to the left of all of
the operands.4 2 4+ 3 3
The MathML for this is:

<mstack>
 <mn>424</mn>
 <msrow> <mo>+</mo> <none/> <mn>33</mn> </msrow>
 <msline/>
</mstack>

Here is an example with the operator on the right. Placing the operator on the right is standard in the Netherlands
and some other countries. Notice that although there are a total of four columns in the example, because the
default alignment is on the implied decimal point to the right of the numbers, it is not necessary to pad any row.1 2 34 5 6 +5 7 9

<mstack>
 <mn>123</mn>
 <msrow> <mn>456</mn> <mo>+</mo> </msrow>
 <msline/>
 <mn>579</mn>
</mstack>

Because the default alignment is placed to the right of number, the numbers align properly and none of the rows
need to be shifted.

The following two examples illustrate the use of mscarries, mscarry and using none to fill in a column. The
examples illustrate two different ways of displaying a borrow.

3 Presentation Markup

118

2 122 , 3 2 7− 1 , 1 5 61 , 1 7 1
2 12 , 3 2 7− 1 , 1 5 61 , 1 7 1

The MathML for the first example is:

<mstack>
 <mscarries crossout='updiagonalstrike'>
 <mn>2</mn> <mn>12</mn> <mscarry crossout='none'> <none/> </mscarry>
 </mscarries>
 <mn>2,327</mn>
 <msrow> <mo>-</mo> <mn> 1,156</mn> </msrow>
 <msline/>
 <mn>1,171</mn>
</mstack>

The MathML for the second example uses mscarry because a crossout should only happen on a single column:

<mstack>
 <mscarries location='nw'>
 <none/>
 <mscarry crossout='updiagonalstrike' location='n'> <mn>2</mn> </mscarry>
 <mn>1</mn>
 <none/>
 </mscarries>
 <mn>2,327</mn>
 <msrow> <mo>-</mo> <mn> 1,156</mn> </msrow>
 <msline/>
 <mn>1,171</mn>
</mstack>

Here is an example of subtraction where there is a borrow with multiple digits in a single column and a cross out.
The borrowed amount is underlined (the example is from a Swedish source):

105 2− 74 5
There are two things to notice. The first is that menclose is used in the carry and that none is used for the
empty element so that mscarry can be used to create a crossout.

<mstack>
 <mscarries>
 <mscarry crossout='updiagonalstrike'><none/></mscarry>
 <menclose notation='bottom'> <mn>10</mn> </menclose>
 </mscarries>
 <mn>52</mn>
 <msrow> <mo>-</mo> <mn> 7</mn> </msrow>
 <msline/>
 <mn>45</mn>
</mstack>

3.6 Elementary Math

119

http://www.fritext.se/matte/grunder/posi2.html

3.6.8.2 Multiplication

Below is a simple multiplication example that illustrates the use of msgroup and the shift attribute. The first
msgroup does nothing. The second msgroup could also be removed, but msrow would be needed for its second
and third children. They would set the position or shift attributes, or would add none elements.1 2 3× 3 2 11 2 32 4 63 6 9

<mstack>
 <msgroup>
 <mn>123</mn>
 <msrow><mo>×<!--MULTIPLICATION SIGN--></mo><mn>321</mn></msrow>
 </msgroup>
 <msline/>
 <msgroup shift="1">
 <mn>123</mn>
 <mn>246</mn>
 <mn>369</mn>
 </msgroup>
 <msline/>
</mstack>

This example has multiple rows of carries. It also (somewhat artificially) includes commas (",") as digit separa-
tors. The encoding includes these separators in the spacing attribute value, along non-ASCII values.

1 11 11 , 2 3 4× 4 , 3 2 11 1 1 1 11 , 2 3 42 4 , 6 83 7 0 , 24 , 9 3 65 , 3 3 2 , 1 1 4
<mstack>
 <mscarries><mn>1</mn><mn>1</mn><none/></mscarries>
 <mscarries><mn>1</mn><mn>1</mn><none/></mscarries>
 <mn>1,234</mn>
 <msrow><mo>×<!--MULTIPLICATION SIGN--></mo><mn>4,321</mn></msrow>
 <msline/>

 <mscarries position='2'>
 <mn>1</mn>
 <none/>
 <mn>1</mn>
 <mn>1</mn>
 <mn>1</mn>
 <none/>
 <mn>1</mn>
 </mscarries>
 <msgroup shift="1">

3 Presentation Markup

120

 <mn>1,234</mn>
 <mn>24,68</mn>
 <mn>370,2</mn>
 <msrow position="1"> <mn>4,936</mn> </msrow>
 </msgroup>
 <msline/>

 <mn>5,332,114</mn>
</mstack>

3.6.8.3 Long Division

The notation used for long division varies considerably among countries. Most notations share the common
characteristics of aligning intermediate results and drawing lines for the operands to be subtracted. Minus signs
are sometimes shown for the intermediate calculations, and sometimes they are not. The line that is drawn varies
in length depending upon the notation. The most apparent difference among the notations is that the position of
the divisor varies, as does the location of the quotient, remainder, and intermediate terms.

The layout used is controlled by the longdivstyle attribute. Below are examples for the values listed in
Section 3.6.2.2 Attributes

"lefttop" "stackedrightright" "mediumstackedrightright" "shortstackedrightright" "righttop"

3 4 3 5 . 31 3 0 61 21 091 61 51 . 091

34 3 5 . 31 3 0 61 21 091 61 51 . 091

34 3 5 . 31 3 0 61 21 091 61 51 . 091

34 3 5 . 31 3 0 61 21 091 61 51 . 091

34 3 5 . 31 3 0 61 21 091 61 51 . 091
"left/\right" "left)(right" ":right=right" "stackedleftleft" "stackedleftlinetop"3 / \ 4 3 5 . 31 3 0 61 21 091 61 51 . 091

3) (4 3 5 . 31 3 0 61 21 091 61 51 . 091

: 3 = 4 3 5 . 31 3 0 61 21 091 61 51 . 091

34 3 5 . 3 1 3 0 61 21 091 61 51 . 091

٣
٤ ٣ ٥ ٫ ٣

١ ٣ ٠ ٦
١ ٢
١ ٠
٩
١ ٦
١ ٥
١ ٫ ٠

٩
١

The MathML for the first example is shown below. It illustrates the use of nested msgroups and how the
position is calculated in those usages.

<mlongdiv longdivstyle="lefttop">
 <mn> 3 </mn>
 <mn> 435.3</mn>

 <mn> 1306</mn>

 <msgroup position="2" shift="-1">
 <msgroup>

3.6 Elementary Math

121

 <mn> 12</mn>
 <msline length="2"/>
 </msgroup>
 <msgroup>
 <mn> 10</mn>
 <mn> 9</mn>
 <msline length="2"/>
 </msgroup>
 <msgroup>
 <mn> 16</mn>
 <mn> 15</mn>
 <msline length="2"/>
 <mn> 1.0</mn> <!-- aligns on '.', not the right edge ('0')

-->
 </msgroup>
 <msgroup position='-1'> <!-- extra shift to move to the right of the

"." -->
 <mn> 9</mn>
 <msline length="3"/>
 <mn> 1</mn>
 </msgroup>
 </msgroup>
</mlongdiv>

With the exception of the last example, the encodings for the other examples are the same except that the values
for longdivstyle differ and that a "," is used instead of a "." for the decimal point. For the last example, the
only difference from the other examples besides a different value for longdivstyle is that Arabic numerals
have been used in place of Latin numerals, as shown below.

<mstyle decimalpoint="٫"><!--ARABIC DECIMAL SEPARATOR-->

<mlongdiv longdivstyle="stackedleftlinetop">
 <mn> ٣<!--ARABIC-INDIC DIGIT THREE--> </mn>
 <mn> ٤<!--ARABIC-INDIC DIGIT FOUR-->٣<!--ARABIC-INDIC

DIGIT THREE-->٥<!--ARABIC-INDIC DIGIT FIVE-->٫<!--ARABIC DECIMAL

SEPARATOR-->٣<!--ARABIC-INDIC DIGIT THREE--></mn>

 <mn> ١<!--ARABIC-INDIC DIGIT ONE-->٣<!--ARABIC-INDIC DIGIT

THREE-->٠<!--ARABIC-INDIC DIGIT ZERO-->٦<!--ARABIC-INDIC DIGIT SIX--></mn>
 <msgroup position="2" shift="-1">
 <msgroup>
 <mn> ١<!--ARABIC-INDIC DIGIT ONE-->٢<!--ARABIC-INDIC DIGIT TWO--></mn>
 <msline length="2"/>
 </msgroup>
 <msgroup>
 <mn> ١<!--ARABIC-INDIC DIGIT ONE-->٠<!--ARABIC-INDIC DIGIT ZERO--></mn>
 <mn> ٩<!--ARABIC-INDIC DIGIT NINE--></mn>
 <msline length="2"/>
 </msgroup>
 <msgroup>
 <mn> ١<!--ARABIC-INDIC DIGIT ONE-->٦<!--ARABIC-INDIC DIGIT SIX--></mn>
 <mn> ١<!--ARABIC-INDIC DIGIT ONE-->٥<!--ARABIC-INDIC DIGIT FIVE--></mn>
 <msline length="2"/>
 <mn> ١<!--ARABIC-INDIC DIGIT ONE-->٫<!--ARABIC DECIMAL

SEPARATOR-->٠<!--ARABIC-INDIC DIGIT ZERO--></mn>
 </msgroup>
 <msgroup position='-1'>

3 Presentation Markup

122

 <mn> ٩<!--ARABIC-INDIC DIGIT NINE--></mn>
 <msline length="3"/>
 <mn> ١<!--ARABIC-INDIC DIGIT ONE--></mn>
 </msgroup>
 </msgroup>
</mlongdiv>
</mstyle>

3.6.8.4 Repeating decimal

Decimal numbers that have digits that repeat infinitely such as 1/3 (.3333...) are represented using several
notations. One common notation is to put a horizontal line over the digits that repeat (in Portugal an underline is
used). Another notation involves putting dots over the digits that repeat. These notations are shown below:0 . 3 3 3 30 . 1 4 2 8 5 70 . 1 4 2 8 5 7. .0 . 1 4 2 8 5 7
The MathML for these involves using mstack, msrow, and msline in a straightforward manner. The MathML
for the preceding examples above is given below.

<mstack stackalign="right">
 <msline length="1"/>
 <mn> 0.3333 </mn>
</mstack>

<mstack stackalign="right">
 <msline length="6"/>
 <mn> 0.142857 </mn>
</mstack>

<mstack stackalign="right">
 <mn> 0.142857 </mn>
 <msline length="6"/>
</mstack>

<mstack stackalign="right">
 <msrow> <mo>.</mo> <none/><none/><none/><none/> <mo>.</mo> </msrow>
 <mn> 0.142857 </mn>
</mstack>

3.7 Enlivening Expressions

3.7.1 Bind Action to Sub-Expression <maction>

To provide a mechanism for binding actions to expressions, MathML provides the maction element. This
element accepts any number of sub-expressions as arguments and the type of action that should happen is
controlled by the actiontype attribute. Only three actions are predefined by MathML, but the list of possible
actions is open. Additional predefined actions may be added in future versions of MathML.

3.7 Enlivening Expressions

123

Linking to other elements, either locally within the math element or to some URL, is not handled by maction.
Instead, it is handled by adding a link directly on a MathML element as specified in Section 6.4.4 Linking.

3.7.1.1 Attributes

maction elements accept the attributes listed below in addition to those specified in Section 3.1.10 Mathematics
style attributes common to presentation elements.

By default, MathML applications that do not recognize the specified actiontype should render the selected
sub-expression as defined below. If no selected sub-expression exists, it is a MathML error; the appropriate
rendering in that case is as described in Section 2.3.2 Handling of Errors.

Name values default

actiontype string required
Specifies what should happen for this element. The values allowed are open-ended. Con-
forming renderers may ignore any value they do not handle, although renderers are encour-
aged to render the values listed below.

selection positive-integer 1
Specifies which child should be used for viewing. Its value should be between 1 and
the number of children of the element. The specified child is referred to as the "selected
sub-expression" of the maction element. If the value specified is out of range, it is an
error. When the selection attribute is not specified (including for action types for which
it makes no sense), its default value is 1, so the selected sub-expression will be the first
sub-expression.

If a MathML application responds to a user command to copy a MathML sub-expression to the environment's
"clipboard" (see Section 6.3 Transferring MathML), any maction elements present in what is copied should be
given selection values that correspond to their selection state in the MathML rendering at the time of the copy
command.

When a MathML application receives a mouse event that may be processed by two or more nested maction
elements, the innermost maction element of each action type should respond to the event.

The meanings of the various actiontype values is given below. Note that not all renderers support all of the
actiontype values, and that the allowed values are open-ended.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)...
</maction>

The renderer alternately display the selected subexpression, cycling through them when there is a click
on the selected subexpression. Each click increments the selection value, wrapping back to 1 when it
reaches the last child. Typical uses would be for exercises in education, ellipses in long computer algebra
output, or to illustrate alternate notations. Note that the expressions may be of significantly different size,
so that size negotiation with the browser may be desirable. If size negotiation is not available, scrolling,
elision, panning, or some other method may be necessary to allow full viewing.

<maction actiontype="statusline"> (expression) (message) </maction>
The renderer displays the first child. When a reader clicks on the expression or moves the pointer over
it, the renderer sends a rendering of the message to the browser statusline. Because most browsers in the
foreseeable future are likely to be limited to displaying text on their statusline, the second child should
be an mtext element in most circumstances. For non-mtext messages, renderers might provide a natural
language translation of the markup, but this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>
The renderer displays the first child. When the pointer pauses over the expression for a long enough delay
time, the renderer displays a rendering of the message in a pop-up "tooltip" box near the expression.

3 Presentation Markup

124

Many systems may limit the popup to be text, so the second child should be an mtext element in most
circumstances. For non-mtext messages, renderers may provide a natural language translation of the
markup if full MathML rendering is not practical, but this is not required.

<maction actiontype="input"> (expression) </maction>
The renderer displays the expression. For renderers that allow editing, when focus is passed to this ele-
ment, the maction is replaced by what is entered, pasted, etc. MathML does not restrict what is allowed
as input, nor does it require an editor to allow arbitrary input. Some renderers/editors may restrict the input
to simple (linear) text.

The actiontype values are open-ended. If another value is given and it requires additional attributes, the
attributes must be in a different namespace in XML; in HTML the attributes must begin with "data-". An XML
example is shown below:

<maction actiontype="highlight" my:color="red" my:background="yellow"> expression </maction>
In the example, non-standard attributes from another namespace are being used to pass additional informa-
tion to renderers that support them, without violating the MathML Schema (see Section 2.3.3 Attributes
for unspecified data). The my:color attributes might change the color of the characters in the presenta-
tion, while the my:background attribute might change the color of the background behind the characters.

3.8 Semantics and Presentation

MathML uses the semantics element to allow specifying semantic annotations to presentation MathML ele-
ments; these can be content MathML or other notations. As such, semantics should be considered part of both
presentation MathML and content MathML. All MathML processors should process the semantics element,
even if they only process one of those subsets.

In semantic annotations a presentation MathML expression is typically the first child of the semantics element.
However, it can also be given inside of an annotation-xml element inside the semantics element. If it is
part of an annotation-xml element, then encoding="application/mathml-presentation+xml" or encoding=
"MathML-Presentation" may be used and presentation MathML processors should use this value for the presen-
tation.

See Section 5.1 Annotation Framework for more details about the semantics and annotation-xml elements.

3.8 Semantics and Presentation

125

4 Content Markup

4.1 Introduction

4.1.1 The Intent of Content Markup

The intent of Content Markup is to provide an explicit encoding of the underlying mathematical meaning of an
expression, rather than any particular rendering for the expression. Mathematics is distinguished both by its use
of rigorous formal logic to define and analyze mathematical concepts, and by the use of a (relatively) formal
notational system to represent and communicate those concepts. However, mathematics and its presentation
should not be viewed as one and the same thing. Mathematical notation, though more rigorous than natural
language, is nonetheless at times ambiguous, context-dependent, and varies from community to community. In
some cases, heuristics may adequately infer mathematical semantics from mathematical notation. But in many
others cases, it is preferable to work directly with the underlying, formal, mathematical objects. Content Markup
provides a rigorous, extensible semantic framework and a markup language for this purpose.

The difficulties in inferring semantics from a presentation stem from the fact that there are many to one map-
pings from presentation to semantics and vice versa. For example the mathematical construct "H multiplied by
e" is often encoded using an explicit operator as in H × e. In different presentational contexts, the multiplication
operator might be invisible "H e", or rendered as the spoken word "times". Generally, many different presenta-
tions are possible depending on the context and style preferences of the author or reader. Thus, given "H e" out
of context it may be impossible to decide if this is the name of a chemical or a mathematical product of two
variables H and e. Mathematical presentation also varies across cultures and geographical regions. For example,
many notations for long division are in use in different parts of the world today. Notations may lose currency, for
example the use of musical sharp and flat symbols to denote maxima and minima [Chaundy1954]. A notation in
use in 1644 for the multiplication mentioned above was He [Cajori1928].

By encoding the underlying mathematical structure explicitly, without regard to how it is presented aurally or
visually, it is possible to interchange information more precisely between systems that semantically process
mathematical objects. In the trivial example above, such a system could substitute values for the variables H and
e and evaluate the result. Important application areas include computer algebra systems, automatic reasoning sys-
tem, industrial and scientific applications, multi-lingual translation systems, mathematical search, and interactive
textbooks.

The organization of this chapter is as follows. In Section 4.2 Content MathML Elements Encoding Expression
Structure, a core collection of elements comprising Strict Content Markup are described. Strict Content Markup
is sufficient to encode general expression trees in a semantically rigorous way. It is in one-to-one correspondence
with OpenMath element set. OpenMath is a standard for representing formal mathematical objects and semantics
through the use of extensible Content Dictionaries. Strict Content Markup defines a mechanism for associating
precise mathematical semantics with expression trees by referencing OpenMath Content Dictionaries. The next
two sections introduce markup that is more convenient than Strict markup for some purposes, somewhat less
formal and verbose. In Section 4.3 Content MathML for Specific Structures, markup is introduced for represent-
ing a small number of mathematical idioms, such as limits on integrals, sums and product. These constructs
may all be rewritten as Strict Content Markup expressions, and rules for doing so are given. In Section 4.4
Content MathML for Specific Operators and Constants, elements are introduced for many common function,
operators and constants. This section contains many examples, including equivalent Strict Content expressions.
In Section 4.5 Deprecated Content Elements, elements from MathML 1 and 2 whose use is now discouraged are
listed. Finally, Section 4.6 The Strict Content MathML Transformation summarizes the algorithm for translating
arbitrary Content Markup into Strict Content Markup. It collects together in sequence all the rewrite rules
introduced throughout the rest of the chapter.

126

4.1.2 The Structure and Scope of Content MathML Expressions

Content MathML represents mathematical objects as expression trees. The notion of constructing a general
expression tree is e.g. that of applying an operator to sub-objects. For example, the sum "x + y" can be thought
of as an application of the addition operator to two arguments x and y. And the expression "cos π " as the
application of the cosine function to the number π.

As a general rule, the terminal nodes in the tree represent basic mathematical objects such as numbers, variables,
arithmetic operations and so on. The internal nodes in the tree represent function application or other mathemati-
cal constructions that build up a compound objects. Function application provides the most important example;
an internal node might represent the application of a function to several arguments, which are themselves
represented by the nodes underneath the internal node.

The semantics of general mathematical expressions is not a matter of consensus. It would be an enormous job to
systematically codify most of mathematics – a task that can never be complete. Instead, MathML makes explicit
a relatively small number of commonplace mathematical constructs, chosen carefully to be sufficient in a large
number of applications. In addition, it provides a mechanism for referring to mathematical concepts outside of
the base collection, allowing them to be represented, as well.

The base set of content elements is chosen to be adequate for simple coding of most of the formulas used from
kindergarten to the end of high school in the United States, and probably beyond through the first two years of
college, that is up to A-Level or Baccalaureate level in Europe.

While the primary role of the MathML content element set is to directly encode the mathematical structure of
expressions independent of the notation used to present the objects, rendering issues cannot be ignored. There
are different approaches for rendering Content MathML formulae, ranging from native implementations of the
MathML elements to declarative notation definitions, to XSLT style sheets. Because rendering requirements for
Content MathML vary widely, MathML 3 does not provide a normative specification for rendering. Instead,
typical renderings are suggested by way of examples.

4.1.3 Strict Content MathML

In MathML 3, a subset, or profile, of Content MathML is defined: Strict Content MathML. This uses a minimal,
but sufficient, set of elements to represent the meaning of a mathematical expression in a uniform structure,
while the full Content MathML grammar is backward compatible with MathML 2.0, and generally tries to strike
a more pragmatic balance between verbosity and formality.

Content MathML provides a large number of predefined functions encoded as empty elements (e.g. sin, log,
etc.) and a variety of constructs for forming compound objects (e.g. set, interval, etc.). By contrast, Strict
Content MathML uses a single element (csymbol) with an attribute pointing to an external definition in exten-
sible content dictionaries to represent all functions, and uses only apply and bind for building up compound
objects. The token elements such as ci and cn are also considered part of Strict Content MathML, but with a
more restricted set of attributes and with content restricted to text.

Strict Content MathML is designed to be compatible with OpenMath (in fact it is an XML encoding of Open-
Math Objects in the sense of [OpenMath2004]). OpenMath is a standard for representing formal mathematical
objects and semantics through the use of extensible Content Dictionaries. The table below gives an element-
by-element correspondence between the OpenMath XML encoding of OpenMath objects and Strict Content
MathML.

Strict Content MathML OpenMath

cn OMI, OMF
csymbol OMS

4.1 Introduction

127

Strict Content MathML OpenMath

ci OMV

cs OMSTR

apply OMA

bind OMBIND

bvar OMBVAR

share OMR

semantics OMATTR

annotation, annotation-xml OMATP, OMFOREIGN
cerror OME

cbytes OMB

In MathML 3, formal semantics Content MathML expressions are given by specifying equivalent Strict Content
MathML expressions. Since Strict Content MathML expressions all have carefully-defined semantics given in
terms of OpenMath Content Dictionaries, all Content MathML expressions inherit well-defined semantics in this
way. To make the correspondence exact, an algorithm is given in terms of transformation rules that are applied
to rewrite non-Strict MathML constructs into a strict equivalents. The individual rules are introduced in context
throughout the chapter. In Section 4.6 The Strict Content MathML Transformation, the algorithm as a whole is
described.

As most transformation rules relate to classes of MathML elements that have similar argument structure, they
are introduced in Section 4.3.4 Operator Classes where these classes are defined. Some special case rules for
specific elements are given in Section Section 4.4 Content MathML for Specific Operators and Constants.
Transformations in Section 4.2 Content MathML Elements Encoding Expression Structure concern non-Strict
usages of the core Content MathML elements, those in Section 4.3 Content MathML for Specific Structures
concern the rewriting of some additional structures not directly supported in Strict Content MathML.

The full algorithm described inSection 4.6 The Strict Content MathML Transformation is complete in the
sense that it gives every Content MathML expression a specific meaning in terms of a Strict Content MathML
expression. This means it has to give specific strict interpretations to some expressions whose meaning was
insufficiently specified in MathML2. The intention of this algorithm is to be faithful to mathematical intuitions.
However edge cases may remain where the normative interpretation of the algorithm may break earlier intu-
itions.

A conformant MathML processor need not implement this transformation. The existence of these transformation
rules does not imply that a system must treat equivalent expressions identically. In particular systems may
give different presentation renderings for expressions that the transformation rules imply are mathematically
equivalent.

4.1.4 Content Dictionaries

Due to the nature of mathematics, any method for formalizing the meaning of the mathematical expressions must
be extensible. The key to extensibility is the ability to define new functions and other symbols to expand the
terrain of mathematical discourse. To do this, two things are required: a mechanism for representing symbols not
already defined by Content MathML, and a means of associating a specific mathematical meaning with them
in an unambiguous way. In MathML 3, the csymbol element provides the means to represent new symbols,
while Content Dictionaries are the way in which mathematical semantics are described. The association is
accomplished via attributes of the csymbol element that point at a definition in a CD. The syntax and usage of
these attributes are described in detail in Section 4.2.3 Content Symbols <csymbol>.

4 Content Markup

128

Content Dictionaries are structured documents for the definition of mathematical concepts; see the OpenMath
standard, [OpenMath2004]. To maximize modularity and reuse, a Content Dictionary typically contains a rel-
atively small collection of definitions for closely related concepts. The OpenMath Society maintains a large
set of public Content Dictionaries including the MathML CD group that including contains definitions for all
pre-defined symbols in MathML. There is a process for contributing privately developed CDs to the OpenMath
Society repository to facilitate discovery and reuse. MathML 3 does not require CDs be publicly available,
though in most situations the goals of semantic markup will be best served by referencing public CDs available
to all user agents.

In the text below, descriptions of semantics for predefined MathML symbols refer to the Content Dictionaries
developed by the OpenMath Society in conjunction with the W3C Math Working Group. It is important to note,
however, that this information is informative, and not normative. In general, the precise mathematical semantics
of predefined symbols are not not fully specified by the MathML 3 Recommendation, and the only normative
statements about symbol semantics are those present in the text of this chapter. The semantic definitions provi-
ded by the OpenMath Content CDs are intended to be sufficient for most applications, and are generally compat-
ible with the semantics specified for analogous constructs in the MathML 2.0 Recommendation. However, in
contexts where highly precise semantics are required (e.g. communication between computer algebra systems,
within formal systems such as theorem provers, etc.) it is the responsibility of the relevant community of practice
to verify, extend or replace definitions provided by OpenMath CDs as appropriate.

4.1.5 Content MathML Concepts

The basic building blocks of Content MathML expressions are numbers, identifiers and symbols. These building
blocks are combined using function applications and binding operators. It is important to have a basic under-
standing of these key mathematical concepts, and how they are reflected in the design of Content MathML. For
the convenience of the reader, these concepts are reviewed here.

In the expression "x + y", x is a mathematical variable, meaning an identifier that represents a quantity with
no fixed value. It may have other properties, such as being an integer, but its value is not a fixed property. By
contrast, the plus sign is an identifier that represents a fixed and externally defined object, namely the addition
function. Such an identifier is termed a symbol, to distinguish it from a variable. Common elementary functions
and operators all have fixed, external definitions, and are hence symbols. Content MathML uses the ci element
to represent variables, and the csymbol to represent symbols.

The most fundamental way in which symbols and variables are combined is function application. Content
MathML makes a crucial semantic distinction between a function itself (a symbol such as the sine function,
or a variable such as f) and the result of applying the function to arguments. The apply element groups the
function with its arguments syntactically, and represents the expression resulting from applying that function to
its arguments.

Mathematically, variables are divided into bound and free variables. Bound variables are variables that are
assigned a special role by a binding operator within a certain scope. For example, the index variable within
a summation is a bound variable. They can be characterized as variables with the property that they can be
renamed consistently throughout the binding scope without changing the underlying meaning of the expression.
Variables that are not bound are termed free variables. Because the logical distinction between bound and free
variables is important for well-defined semantics, Content MathML differentiates between the application of a
function to a free variable, e.g. f x and the operation of binding a variable within a scope. The bind element
is used the delineate the binding scope, and group the binding operator with its bound variables, which are
indicated by the bvar element.

In Strict Content markup, the bind element is the only way of performing variable binding. In non-Strict
usage, however, markup is provided that more closely resembles well-known idiomatic notations, such as the
"limit" notations for sums and integrals. These constructs often implicitly bind variables, such as the variable of

4.1 Introduction

129

integration, or the index variable in a sum. MathML terms the elements used to represent the auxiliary data such
as limits required by these constructions qualifier elements.

Expressions involving qualifiers follow one of a small number of idiomatic patterns, each of which applies to
class of similar binding operators. For example, sums and products are in the same class because they use index
variables following the same pattern. The Content MathML operator classes are described in detail in Section
4.3.4 Operator Classes.

Each Content MathML element is described in a section below that begins with a table summarizing the key
information about the element. For elements that have different Strict and non-Strict usage, these syntax tables
are divided to clearly separate the two cases. The element's content model is given in the Content row, linked
to the MathML Schema in Appendix A Parsing MathML. The Attributes, and Attribute Values rows similarly
link to the schema. Where applicable, the Class row specifies the operator class, which indicate how many
arguments the operator represented by this element takes, and also in many cases determines the mapping to
Strict Content MathML, as described in Section 4.3.4 Operator Classes. Finally, the Qualifiers row clarifies
whether the operator takes qualifiers and if so, which. Note Class and Qualifiers specify how many siblings may
follow the operator element in an apply, or the children of the element for container elements; see Section 4.2.5
Function Application <apply> and Section 4.3.3 Qualifiers for details).

4.2 Content MathML Elements Encoding Expression Structure

In this section we will present the elements for encoding the structure of content MathML expressions. These
elements are the only ones used for the Strict Content MathML encoding. Concretely, we have

• basic expressions, i.e. Numbers, string literals, encoded bytes, Symbols, and Identifiers.•

• derived expressions, i.e. function applications and binding expressions, and•

• semantic annotations•

• error markup•

Full Content MathML allows further elements presented in Section 4.3 Content MathML for Specific Structures
and Section 4.4 Content MathML for Specific Operators and Constants, and allows a richer content model
presented in this section. Differences in Strict and non-Strict usage of are highlighted in the sections discussing
each of the Strict element below.

4.2.1 Numbers <cn>

Schema Fragment (Strict) Schema Fragment (Full)

Class Cn Cn

Attributes CommonAtt, type CommonAtt, DefEncAtt, type?, base?

type Attribute Values
"integer" | "real" | "double" |
"hexdouble"

 "integer" | "real" | "double" | "hexdouble" | "e-notation" | "rational" |
"complex-cartesian" | "complex-polar" | "constant" | text

default is real

base Attribute Values integer default is 10

Content text (text | mglyph | sep | PresentationExpression)*

The cn element is the Content MathML element used to represent numbers. Strict Content MathML supports
integers, real numbers, and double precision floating point numbers. In these types of numbers, the content of
cn is text. Additionally, cn supports rational numbers and complex numbers in which the different parts are
separated by use of the sep element. Constructs using sep may be rewritten in Strict Content MathML as
constructs using apply as described below.

The type attribute specifies which kind of number is represented in the cn element. The default value is "real".
Each type implies that the content be of a certain form, as detailed below.

4 Content Markup

130

4.2.1.1 Rendering <cn>, <sep/> - Represented Numbers

The default rendering of the text content of cn is the same as that of the Presentation element mn, with suggested
variants in the case of attributes or sep being used, as listed below.

4.2.1.2 Strict uses of <cn>

In Strict Content MathML, the type attribute is mandatory, and may only take the values "integer", "real",
"hexdouble" or "double":

integer
An integer is represented by an optional sign followed by a string of one or more decimal "digits".

real
A real number is presented in radix notation. Radix notation consists of an optional sign ("+" or "-")
followed by a string of digits possibly separated into an integer and a fractional part by a decimal point.
Some examples are 0.3, 1, and -31.56.

double
This type is used to mark up those double-precision floating point numbers that can be represented in
the IEEE 754 standard format [IEEE754]. This includes a subset of the (mathematical) real numbers,
negative zero, positive and negative real infinity and a set of "not a number" values. The lexical rules for
interpreting the text content of a cn as an IEEE double are specified by Section 3.1.2.5 of XML Schema
Part 2: Datatypes Second Edition [XMLSchemaDatatypes]. For example, -1E4, 1267.43233E12, 12.78e-2,
12, -0, 0 and INF are all valid doubles in this format.

hexdouble
This type is used to directly represent the 64 bits of an IEEE 754 double-precision floating point number
as a 16 digit hexadecimal number. Thus the number represents mantissa, exponent, and sign from lowest
to highest bits using a least significant byte ordering. This consists of a string of 16 digits 0-9, A-F.
The following example represents a NaN value. Note that certain IEEE doubles, such as the NaN in the
example, cannot be represented in the lexical format for the "double" type.

Content MathML

<cn type="hexdouble">7F800000</cn>

Sample Presentation

<mn>0x7F800000</mn>

0x7F800000
4.2.1.3 Non-Strict uses of <cn>

The base attribute is used to specify how the content is to be parsed. The attribute value is a base 10 positive
integer giving the value of base in which the text content of the cn is to be interpreted. The base attribute should
only be used on elements with type "integer" or "real". Its use on cn elements of other type is deprecated. The
default value for base is "10".

Additional values for the type attribute element for supporting e-notations for real numbers, rational numbers,
complex numbers and selected important constants. As with the "integer", "real", "double" and "hexdouble"
types, each of these types implies that the content be of a certain form. If the type attribute is omitted, it defaults
to "real".

4.2 Content MathML Elements Encoding Expression Structure

131

http://www.w3.org/TR/xmlschema-2/#double

integer
Integers can be represented with respect to a base different from 10: If base is present, it specifies (in
base 10) the base for the digit encoding. Thus base='16' specifies a hexadecimal encoding. When base >
10, Latin letters (A-Z, a-z) are used in alphabetical order as digits. The case of letters used as digits is not
significant. The following example encodes the base 10 number 32736.

Content MathML

<cn base="16">7FE0</cn>

Sample Presentation

<msub><mn>7FE0</mn><mn>16</mn></msub>

7FE016
When base > 36, some integers cannot be represented using numbers and letters alone. For example,
while

<cn base="1000">10F</cn>

arguably represents the number written in base 10 as 1,000,015, the number written in base 10 as
1,000,037 cannot be represented using letters and numbers alone when base is 1000. Consequently, sup-
port for additional characters (if any) that may be used for digits when base > 36 is application specific.

real
Real numbers can be represented with respect to a base different than 10. If a base attribute is present,
then the digits are interpreted as being digits computed relative to that base (in the same way as described
for type "integer").

e-notation
A real number may be presented in scientific notation using this type. Such numbers have two parts (a
significand and an exponent) separated by a <sep/> element. The first part is a real number, while the
second part is an integer exponent indicating a power of the base.

For example, <cn type="e-notation">12.3<sep/>5</cn> represents 12.3 times 105. The default
presentation of this example is 12.3e5. Note that this type is primarily useful for backwards compatibility
with MathML 2, and in most cases, it is preferable to use the "double" type, if the number to be represen-
ted is in the range of IEEE doubles:

rational
A rational number is given as two integers to be used as the numerator and denominator of a quotient. The
numerator and denominator are separated by <sep/>.

Content MathML

<cn type="rational">22<sep/>7</cn>

Sample Presentation

<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>

22/7

4 Content Markup

132

complex-cartesian
A complex cartesian number is given as two numbers specifying the real and imaginary parts. The real and
imaginary parts are separated by the <sep/> element, and each part has the format of a real number as
described above.

Content MathML

<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>

Sample Presentation

<mrow>
 <mn>12.3</mn><mo>+</mo><mn>5</mn><mo>⁢<!--INVISIBLE TIMES--></mo>

<mi>i</mi>
</mrow>

12.3 + 5i
complex-polar

A complex polar number is given as two numbers specifying the magnitude and angle. The magnitude and
angle are separated by the <sep/> element, and each part has the format of a real number as described
above.

Content MathML

<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>

Sample Presentation

<mrow>
 <mn>2</mn>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <msup>
 <mi>e</mi>
 <mrow><mi>i</mi><mo>⁢<!--INVISIBLE TIMES--></mo><mn>3.1415</mn>

</mrow>
 </msup>
</mrow>

2ei3.1415
<mrow>
 <mi>Polar</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mn>2</mn><mn>3.1415</mn></mfenced>
</mrow>

Polar 2, 3.1415
constant

If the value type is "constant", then the content should be a Unicode representation of a well-known
constant. Some important constants and their common Unicode representations are listed below.

4.2 Content MathML Elements Encoding Expression Structure

133

This cn type is primarily for backward compatibility with MathML 1.0. MathML 2.0 introduced many
empty elements, such as <pi/> to represent constants, and using these representations or a Strict csymbol
representation is preferred.

In addition to the additional values of the type attribute, the content of cn element can contain (in addition to the
sep element allowed in Strict Content MathML) mglyph elements to refer to characters not currently available
in Unicode, or a general presentation construct (see Section 3.1.9 Summary of Presentation Elements), which is
used for rendering (see Section 4.1.2 The Structure and Scope of Content MathML Expressions).

Mapping to Strict Content MathML

If a base attribute is present, it specifies the base used for the digit encoding of both integers. The use of base
with "rational" numbers is deprecated.

Rewrite: cn sep

If there are sep children of the cn, then intervening text may be rewritten as cn elements. If the cn element
containing sep also has a base attribute, this is copied to each of the cn arguments of the resulting symbol, as
shown below.

<cn type="rational" base="b">n<sep/>d</cn>

is rewritten to

<apply><csymbol cd="nums1">rational</csymbol>
 <cn type="integer" base="b">n</cn>
 <cn type="integer" base="b">d</cn>
</apply>

The symbol used in the result depends on the type attribute according to the following table:

type attribute OpenMath Symbol

e-notation bigfloat
rational rational
complex-cartesian complex_cartesian
complex-polar complex_polar

Note: In the case of bigfloat the symbol takes three arguments, <cn type="integer">10</cn> should be
inserted as the second argument, denoting the base of the exponent used.

If the type attribute has a different value, or if there is more than one <sep/> element, then the intervening
expressions are converted as above, but a system-dependent choice of symbol for the head of the application
must be used.

If a base attribute has been used then the resulting expression is not Strict Content MathML, and each of the
arguments needs to be recursively processed.

Rewrite: cn based_integer

A cn element with a base attribute other than 10 is rewritten as follows. (A base attribute with value 10 is
simply removed) .

4 Content Markup

134

http://www.openmath.org/cd/bigfloat1.xhtml#bigfloat
http://www.openmath.org/cd/nums1.xhtml#rational
http://www.openmath.org/cd/complex1.xhtml#complex_cartesian
http://www.openmath.org/cd/complex1.xhtml#complex_polar
http://www.openmath.org/cd/bigfloat1.xhtml#bigfloat

<cn type="integer" base="16">FF60</cn>

<apply><csymbol cd="nums1">based_integer</csymbol>
 <cn type="integer">16</cn>
 <cs>FF60</cs>
</apply>

If the original element specified type "integer" or if there is no type attribute, but the content of the element
just consists of the characters [a-zA-Z0-9] and white space then the symbol used as the head in the resulting
application should be based_integer as shown. Otherwise it should be should be based_float.

Rewrite: cn constant

In Strict Content MathML, constants should be represented using csymbol elements. A number of important
constants are defined in the nums1 content dictionary. An expression of the form

<cn type="constant">c</cn>

has the Strict Content MathML equivalent

<csymbol cd="nums1">c2</csymbol>

where c2 corresponds to c as specified in the following table.

Content Description
OpenMath

Symbol

U+03C0 (π) The usual π of trigonometry: approximately
3.141592653...

pi

U+2147 (ⅇ or
ⅇ)

The base for natural logarithms: approximately
2.718281828...

e

U+2148 (ⅈ or ⅈ) Square root of -1 i
U+03B3 (γ) Euler's constant: approximately 0.5772156649... gamma
U+221E (∞ or &infty;) Infinity. Proper interpretation varies with context infinity

Rewrite: cn presentation mathml

If the cn contains Presentation MathML markup, then it may be rewritten to Strict MathML using variants
of the rules above where the arguments of the constructor are ci elements annotated with the supplied
Presentation MathML.

A cn expression with non-text content of the form

<cn type="rational"><mi>P</mi><sep/><mi>Q</mi></cn>

is transformed to Strict Content MathML by rewriting it to

<apply><csymbol cd="nums1">rational</csymbol>
 <semantics>

 <ci>p</ci>
 <annotation-xml encoding="MathML-Presentation">

4.2 Content MathML Elements Encoding Expression Structure

135

http://www.openmath.org/cd/nums1.xhtml#based_integer
http://www.openmath.org/cd/nums1.xhtml#based_float
http://www.openmath.org/cd/nums1.xhtml
http://www.openmath.org/cd/nums1.xhtml#pi
http://www.openmath.org/cd/nums1.xhtml#e
http://www.openmath.org/cd/nums1.xhtml#i
http://www.openmath.org/cd/nums1.xhtml#gamma
http://www.openmath.org/cd/nums1.xhtml#infinity

 <mi>P</mi>
 </annotation-xml>
 </semantics>
 <semantics>

 <ci>q</ci>
 <annotation-xml encoding="MathML-Presentation">

 <mi>Q</mi>
 </annotation-xml>
 </semantics>
</apply>

Where the identifier names, p and q, (which have to be a text string) should be determined from the presen-
tation MathML content, in a system defined way, perhaps as in the above example by taking the character
data of the element ignoring any element markup. Systems doing such rewriting should ensure that constructs
using the same Presentation MathML content are rewritten to semantics elements using the same ci, and
that conversely constructs that use different MathML should be rewritten to different identifier names (even if
the Presentation MathML has the same character data).

A related special case arises when a cn element contains character data not permitted in Strict Content
MathML usage, e.g. non-digit, alphabetic characters. Conceptually, this is analogous to a cn element contain-
ing a presentation markup mtext element, and could be rewritten accordingly. However, since the resulting
annotation would contain no additional rendering information, such instances should be rewritten directly as
ci elements, rather than as a semantics construct.

4.2.2 Content Identifiers <ci>

Schema Fragment (Strict) Schema Fragment (Full)

Class Ci Ci

Attributes CommonAtt, type? CommonAtt, DefEncAtt, type?

type Attribute Values
"integer"| "rational"| "real"| "complex"| "complex-polar"| "complex-
cartesian"| "constant"| "function"| "vector"| "list"| "set"| "matrix"

string

Qualifiers BvarQ, DomainQ, degree, momentabout, logbase

Content text text | mglyph | PresentationExpression

Content MathML uses the ci element (mnemonic for "content identifier") to construct a variable. Content
identifiers represent "mathematical variables" which have properties, but no fixed value. For example, x and y
are variables in the expression "x + y", and the variable x would be represented as

<ci>x</ci>

In MathML, variables are distinguished from symbols, which have fixed, external definitions, and are represen-
ted by the csymbol element.

After white space normalization the content of a ci element is interpreted as a name that identifies it. Two
variables are considered equal, if and only if their names are identical and in the same scope (see Section 4.2.6
Bindings and Bound Variables <bind> and <bvar> for a discussion).

4.2.2.1 Strict uses of <ci>

The ci element uses the type attribute to specify the basic type of object that it represents. In Strict Content
MathML, the set of permissible values is "integer", "rational", "real", "complex", "complex-polar", "complex-
cartesian", "constant", "function", vector, list, set, and matrix. These values correspond to the symbols
integer_type, rational_type, real_type, complex_polar_type, complex_cartesian_type, constant_type, fn_type,

4 Content Markup

136

http://www.openmath.org/cd/mathmltypes.xhtml#integer_type
http://www.openmath.org/cd/mathmltypes.xhtml#rational_type
http://www.openmath.org/cd/mathmltypes.xhtml#real_type
http://www.openmath.org/cd/mathmltypes.xhtml#complex_polar_type
http://www.openmath.org/cd/mathmltypes.xhtml#complex_cartesian_type
http://www.openmath.org/cd/mathmltypes.xhtml#constant_type
http://www.openmath.org/cd/mathmltypes.xhtml#fn_type

vector_type, list_type, set_type, and matrix_type in the mathmltypes Content Dictionary: In this sense the fol-
lowing two expressions are considered equivalent:

<ci type="integer">n</ci>

<semantics>
 <ci>n</ci>
 <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
 <csymbol cd="mathmltypes">integer_type</csymbol>
 </annotation-xml>
</semantics>

Note that "complex" should be considered an alias for "complex-cartesian" and rewritten to the same com-
plex_cartesian_type symbol. It is perhaps a more natural type name for use with ci as the distinction between
cartesian and polar form really only affects the interpretation of literals encoded with cn.

4.2.2.2 Non-Strict uses of <ci>

The ci element allows any string value for the type attribute, in particular any of the names of the MathML
container elements or their type values.

For a more advanced treatment of types, the type attribute is inappropriate. Advanced types require significant
structure of their own (for example, vector(complex)) and are probably best constructed as mathematical objects
and then associated with a MathML expression through use of the semantics element. See [MathMLTypes] for
more examples.

Mapping to Strict Content MathML

Rewrite: ci type annotation

In Strict Content, type attributes are represented via semantic attribution. An expression of the form

<ci type="T">n</ci>

is rewritten to

<semantics>

 <ci>n</ci>
 <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">

 <ci>T</ci>
 </annotation-xml>
</semantics>

The ci element can contain mglyph elements to refer to characters not currently available in Unicode, or a gen-
eral presentation construct (see Section 3.1.9 Summary of Presentation Elements), which is used for rendering
(see Section 4.1.2 The Structure and Scope of Content MathML Expressions).

Rewrite: ci presentation mathml

A ci expression with non-text content of the form

4.2 Content MathML Elements Encoding Expression Structure

137

http://www.openmath.org/cd/mathmltypes.xhtml#vector_type
http://www.openmath.org/cd/mathmltypes.xhtml#list_type
http://www.openmath.org/cd/mathmltypes.xhtml#set_type
http://www.openmath.org/cd/mathmltypes.xhtml#matrix_type
http://www.openmath.org/cd/mathmltypes.xhtml
http://www.openmath.org/cd/mathmltypes.xhtml#complex_cartesian_type

<ci><mi>P</mi></ci>

is transformed to Strict Content MathML by rewriting it to

<semantics>

 <ci>p</ci>
 <annotation-xml encoding="MathML-Presentation">

 <mi>P</mi>
 </annotation-xml>
</semantics>

Where the identifier name, p, (which has to be a text string) should be determined from the presentation
MathML content, in a system defined way, perhaps as in the above example by taking the character data of
the element ignoring any element markup. Systems doing such rewriting should ensure that constructs using
the same Presentation MathML content are rewritten to semantics elements using the same ci, and that
conversely constructs that use different MathML should be rewritten to different identifier names (even if the
Presentation MathML has the same character data).

The following example encodes an atomic symbol that displays visually as C2 and that, for purposes of
content, is treated as a single symbol

<ci>
 <msup><mi>C</mi><mn>2</mn></msup>
</ci>

The Strict Content MathML equivalent is

<semantics>
 <ci>C2</ci>
 <annotation-xml encoding="MathML-Presentation">
 <msup><mi>C</mi><mn>2</mn></msup>
 </annotation-xml>
</semantics>

Sample Presentation

 <msup><mi>C</mi><mn>2</mn></msup>

C2
4.2.2.3 Rendering Content Identifiers

If the content of a ci element consists of Presentation MathML, that presentation is used. If no such tagging is
supplied then the text content is rendered as if it were the content of an mi element. If an application supports
bidirectional text rendering, then the rendering follows the Unicode bidirectional rendering.

The type attribute can be interpreted to provide rendering information. For example in

<ci type="vector">V</ci>

4 Content Markup

138

a renderer could display a bold V for the vector.

4.2.3 Content Symbols <csymbol>

Schema Fragment (Strict) Schema Fragment (Full)

Class Csymbol Csymbol

Attributes CommonAtt, cd CommonAtt, DefEncAtt, type?, cd?

Content SymbolName text | mglyph | PresentationExpression

Qualifiers BvarQ, DomainQ, degree, momentabout, logbase

A csymbol is used to refer to a specific, mathematically-defined concept with an external definition. In the
expression "x + y", the plus sign is a symbol since it has a specific, external definition, namely the addition
function. MathML 3 calls such an identifier a symbol. Elementary functions and common mathematical operators
are all examples of symbols. Note that the term "symbol" is used here in an abstract sense and has no connection
with any particular presentation of the construct on screen or paper.

4.2.3.1 Strict uses of <csymbol>

The csymbol identifies the specific mathematical concept it represents by referencing its definition via attrib-
utes. Conceptually, a reference to an external definition is merely a URI, i.e. a label uniquely identifying the
definition. However, to be useful for communication between user agents, external definitions must be shared.

For this reason, several longstanding efforts have been organized to develop systematic, public repositories of
mathematical definitions. Most notable of these, the OpenMath Society repository of Content Dictionaries (CDs)
is extensive, open and active. In MathML 3, OpenMath CDs are the preferred source of external definitions.
In particular, the definitions of pre-defined MathML 3 operators and functions are given in terms of OpenMath
CDs.

MathML 3 provides two mechanisms for referencing external definitions or content dictionaries. The first, using
the cd attribute, follows conventions established by OpenMath specifically for referencing CDs. This is the form
required in Strict Content MathML. The second, using the definitionURL attribute, is backward compatible
with MathML 2, and can be used to reference CDs or any other source of definitions that can be identified by a
URI. It is described in the following section

When referencing OpenMath CDs, the preferred method is to use the cd attribute as follows. Abstractly, Open-
Math symbol definitions are identified by a triple of values: a symbol name, a CD name, and a CD base, which
is a URI that disambiguates CDs of the same name. To associate such a triple with a csymbol, the content of
the csymbol specifies the symbol name, and the name of the Content Dictionary is given using the cd attribute.
The CD base is determined either from the document embedding the math element which contains the csymbol
by a mechanism given by the embedding document format, or by system defaults, or by the cdgroup attribute,
which is optionally specified on the enclosing math element; see Section 2.2.1 Attributes. In the absence of
specific information http://www.openmath.org/cd is assumed as the CD base for all csymbol elements
annotation, and annotation-xml. This is the CD base for the collection of standard CDs maintained by the
OpenMath Society.

The cdgroup specifies a URL to an OpenMath CD Group file. For a detailed description of the format of a
CD Group file, see Section 4.4.2 (CDGroups) in [OpenMath2004]. Conceptually, a CD group file is a list of
pairs consisting of a CD name, and a corresponding CD base. When a csymbol references a CD name using
the cd attribute, the name is looked up in the CD Group file, and the associated CD base value is used for that
csymbol. When a CD Group file is specified, but a referenced CD name does not appear in the group file, or
there is an error in retrieving the group file, the referencing csymbol is not defined. However, the handling of
the resulting error is not defined, and is the responsibility of the user agent.

4.2 Content MathML Elements Encoding Expression Structure

139

While references to external definitions are URIs, it is strongly recommended that CD files be retrievable at the
location obtained by interpreting the URI as a URL. In particular, other properties of the symbol being defined
may be available by inspecting the Content Dictionary specified. These include not only the symbol definition,
but also examples and other formal properties. Note, however, that there are multiple encodings for OpenMath
Content Dictionaries, and it is up to the user agent to correctly determine the encoding when retrieving a CD.

4.2.3.2 Non-Strict uses of <csymbol>

In addition to the forms described above, the csymbol and element can contain mglyph elements to refer to
characters not currently available in Unicode, or a general presentation construct (see Section 3.1.9 Summary
of Presentation Elements), which is used for rendering (see Section 4.1.2 The Structure and Scope of Content
MathML Expressions). In this case, when writing to Strict Content MathML, the csymbol should be treated as a
ci element, and rewritten using Rewrite: ci presentation mathml.

External definitions (in OpenMath CDs or elsewhere) may also be specified directly for a csymbol using the
definitionURL attribute. When used to reference OpenMath symbol definitions, the abstract triple of (symbol
name, CD name, CD base) is mapped to a fully-qualified URI as follows:

URI = cdbase + '/' + cd-name + '#' + symbol-name

For example,

(plus, arith1, http://www.openmath.org/cd)

is mapped to

http://www.openmath.org/cd/arith1#plus

The resulting URI is specified as the value of the definitionURL attribute.

This form of reference is useful for backwards compatibility with MathML2 and to facilitate the use of Content
MathML within URI-based frameworks (such as RDF [rdf] in the Semantic Web or OMDoc [OMDoc1.2]).
Another benefit is that the symbol name in the CD does not need to correspond to the content of the csymbol
element. However, in general, this method results in much longer MathML instances. Also, in situations where
CDs are under development, the use of a CD Group file allows the locations of CDs to change without a
change to the markup. A third drawback to definitionURL is that unlike the cd attribute, it is not limited
to referencing symbol definitions in OpenMath content dictionaries. Hence, it is not in general possible for
a user agent to automatically determine the proper interpretation for definitionURL values without further
information about the context and community of practice in which the MathML instance occurs.

Both the cd and definitionURL mechanisms of external reference may be used within a single MathML
instance. However, when both a cd and a definitionURL attribute are specified on a single csymbol, the cd
attribute takes precedence.

Mapping to Strict Content MathML

In non-Strict usage csymbol allows the use of a type attribute.

Rewrite: csymbol type annotation

In Strict Content, type attributes are represented via semantic attribution. An expression of the form

<csymbol type="T">symbolname</csymbol>

4 Content Markup

140

is rewritten to

<semantics>
 <csymbol>symbolname</csymbol>
 <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">

 <ci>T</ci>
 </annotation-xml>
</semantics>

4.2.3.3 Rendering Symbols

If the content of a csymbol element is tagged using presentation tags, that presentation is used. If no such
tagging is supplied then the text content is rendered as if it were the content of an mi element. In particular if an
application supports bidirectional text rendering, then the rendering follows the Unicode bidirectional rendering.

4.2.4 String Literals <cs>

Schema Fragment (Strict) Schema Fragment (Full)

Class Cs Cs

Attributes CommonAtt CommonAtt, DefEncAtt

Content text text

The cs element encodes "string literals" which may be used in Content MathML expressions.

The content of cs is text; no Presentation MathML constructs are allowed even when used in non-strict markup.
Specifically, cs may not contain mglyph elements, and the content does not undergo white space normalization.

Content MathML

<set>
 <cs>A</cs><cs>B</cs><cs> </cs>
</set>

Sample Presentation

<mrow>
 <mo>{</mo>
 <ms>A</ms>
 <mo>,</mo>
 <ms>B</ms>
 <mo>,</mo>
 <ms> <!--NO-BREAK SPACE--> <!--NO-BREAK SPACE--></ms>
 <mo>}</mo>
</mrow>

"A", "B", " "
4.2.5 Function Application <apply>

Schema Fragment (Strict) Schema Fragment (Full)

Class Apply Apply

Attributes CommonAtt CommonAtt, DefEncAtt

Content ContExp+ ContExp+ | (ContExp, BvarQ, Qualifier?, ContExp*)

4.2 Content MathML Elements Encoding Expression Structure

141

The most fundamental way of building a compound object in mathematics is by applying a function or an
operator to some arguments.

4.2.5.1 Strict Content MathML

In MathML, the apply element is used to build an expression tree that represents the application a function
or operator to its arguments. The resulting tree corresponds to a complete mathematical expression. Roughly
speaking, this means a piece of mathematics that could be surrounded by parentheses or "logical brackets"
without changing its meaning.

For example, x + y might be encoded as

<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>

The opening and closing tags of apply specify exactly the scope of any operator or function. The most typical
way of using apply is simple and recursive. Symbolically, the content model can be described as:

<apply> op [a b ...] </apply>

where the operands a, b, ... are MathML expression trees themselves, and op is a MathML expression tree that
represents an operator or function. Note that apply constructs can be nested to arbitrary depth.

An apply may in principle have any number of operands. For example, x + y + can be encoded as

<apply><csymbol cd="arith1">plus</csymbol>
 <ci>x</ci>
 <ci>y</ci>
 <ci>z</ci>
</apply>

Note that MathML also allows applications without operands, e.g. to represent functions like random(), or
current-date().

Mathematical expressions involving a mixture of operations result in nested occurrences of apply. For example, ax + b would be encoded as

<apply><csymbol cd="arith1">plus</csymbol>
 <apply><csymbol cd="arith1">times</csymbol>
 <ci>a</ci>
 <ci>x</ci>
 </apply>
 <ci>b</ci>
</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to parse expressions
correctly. The apply tags provide the proper grouping for the re-use of the expressions within other constructs.
Any expression enclosed by an apply element is well-defined, coherent object whose interpretation does not
depend on the surrounding context. This is in sharp contrast to presentation markup, where the same expression
may have very different meanings in different contexts. For example, an expression with a visual rendering such
as F + G x might be a product, as in

<apply><csymbol cd="arith1">times</csymbol>
 <apply><csymbol cd="arith1">plus</csymbol>

4 Content Markup

142

 <ci>F</ci>
 <ci>G</ci>
 </apply>
 <ci>x</ci>
</apply>

or it might indicate the application of the function F + G to the argument x. This is indicated by constructing the
sum

<apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>

and applying it to the argument x as in

<apply>
 <apply><csymbol cd="arith1">plus</csymbol>
 <ci>F</ci>
 <ci>G</ci>
 </apply>
 <ci>x</ci>
</apply>

In both cases, the interpretation of the outer apply is explicit and unambiguous, and does not change regardless
of where the expression is used.

The preceding example also illustrates that in an apply construct, both the function and the arguments may be
simple identifiers or more complicated expressions.

The apply element is conceptually necessary in order to distinguish between a function or operator, and an
instance of its use. The expression constructed by applying a function to 0 or more arguments is always an
element from the codomain of the function. Proper usage depends on the operator that is being applied. For
example, the plus operator may have zero or more arguments, while the minus operator requires one or two
arguments in order to be properly formed.

4.2.5.2 Rendering Applications

Strict Content MathML applications are rendered as mathematical function applications. If <mi>F</mi> denotes
the rendering of <ci>f</ci> and <mi>Ai</mi> the rendering of <ci>ai</ci>, the sample rendering of a simple
application is as follows:

Content MathML

<apply><ci>f</ci>
 <ci>a1</ci>
 <ci>a2</ci>
 <ci>...</ci>
 <ci>an</ci>
</apply>

Sample Presentation

<mrow>

 <mi>F</mi>
 <mo>⁡</mo>

4.2 Content MathML Elements Encoding Expression Structure

143

 <mrow>
 <mo fence="true">(</mo>

 <mi>A1</mi>
 <mo separator="true">,</mo>

 <mi>...</mi>
 <mo separator="true">,</mo>

 <mi>A2</mi>
 <mo separator="true">,</mo>

 <mi>An</mi>
 <mo fence="true">)</mo>
 </mrow>
</mrow>

Non-Strict MathML applications may also be used with qualifiers. In the absence of any more specific render-
ing rules for well-known operators, rendering should follow the sample presentation below, motivated by the
typical presentation for sum. Let <mi>Op</mi> denote the rendering of <ci>op</ci>, <mi>X</mi> the rendering of
<ci>x</ci>, and so on. Then:

Content MathML

<apply><ci>op</ci>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>d</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>

Sample Presentation

<mrow>
 <munder>

 <mi>Op</mi>
 <mrow><mi>X</mi><mo>∈</mo><!--ELEMENT OF--><mi>D</mi></mrow>
 </munder>
 <mo>⁡</mo><!--FUNCTION APPLICATION-->
 <mrow>
 <mo fence="true">(</mo>

 <mi>Expression-in-X</mi>
 <mo fence="true">)</mo>
 </mrow>
</mrow>

4.2.6 Bindings and Bound Variables <bind> and <bvar>

Many complex mathematical expressions are constructed with the use of bound variables, and bound variables
are an important concept of logic and formal languages. Variables become bound in the scope of an expression
through the use of a quantifier. Informally, they can be thought of as the "dummy variables" in expressions
such as integrals, sums, products, and the logical quantifiers "for all" and "there exists". A bound variable is
characterized by the property that systematically renaming the variable (to a name not already appearing in the
expression) does not change the meaning of the expression.

4 Content Markup

144

4.2.6.1 Bindings

Schema Fragment (Strict) Schema Fragment (Full)

Class Bind Bind

Attributes CommonAtt CommonAtt, DefEncAtt

Content ContExp, BvarQ*, ContExp ContExp, BvarQ*, Qualifier*, ContExp+

Binding expressions are represented as MathML expression trees using the bind element. Its first child is a
MathML expression that represents a binding operator, for example integral operator. This is followed by a
non-empty list of bvar elements denoting the bound variables, and then the final child which is a general
Content MathML expression, known as the body of the binding.

4.2.6.2 Bound Variables

Schema Fragment (Strict) Schema Fragment (Full)

Class BVar BVar

Attributes CommonAtt CommonAtt, DefEncAtt

Content ci | semantics-ci (ci | semantics-ci), degree? | degree?, (ci | semantics-ci

The bvar element is used to denote the bound variable of a binding expression, e.g. in sums, products, and
quantifiers or user defined functions.

The content of a bvar element is an annotated variable, i.e. either a content identifier represented by a ci
element or a semantics element whose first child is an annotated variable. The name of an annotated variable
of the second kind is the name of its first child. The name of a bound variable is that of the annotated variable in
the bvar element.

Bound variables are identified by comparing their names. Such identification can be made explicit by placing an
id on the ci element in the bvar element and referring to it using the xref attribute on all other instances. An
example of this approach is

<bind><csymbol cd="quant1">forall</csymbol>
 <bvar><ci id="var-x">x</ci></bvar>
 <apply><csymbol cd="relation1">lt</csymbol>
 <ci xref="var-x">x</ci>
 <cn>1</cn>
 </apply>
</bind>

This id based approach is especially helpful when constructions involving bound variables are nested.

It is sometimes necessary to associate additional information with a bound variable. The information might be
something like a detailed mathematical type, an alternative presentation or encoding or a domain of application.
Such associations are accomplished in the standard way by replacing a ci element (even inside the bvar
element) by a semantics element containing both the ci and the additional information. Recognition of an
instance of the bound variable is still based on the actual ci elements and not the semantics elements or
anything else they may contain. The id based-approach outlined above may still be used.

The following example encodes forall x. x + y = y + x.

<bind><csymbol cd="quant1">forall</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><csymbol cd="relation1">eq</csymbol>
 <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
 <apply><csymbol cd="arith1">plus</csymbol><ci>y</ci><ci>x</ci></apply>

4.2 Content MathML Elements Encoding Expression Structure

145

 </apply>
</bind>

In non-Strict Content markup, the bvar element is used in a number of idiomatic constructs. These are described
in Section 4.3.3 Qualifiers and Section 4.4 Content MathML for Specific Operators and Constants.

4.2.6.3 Renaming Bound Variables

It is a defining property of bound variables that they can be renamed consistently in the scope of their parent
bind element. This operation, sometimes known as α-conversion, preserves the semantics of the expression.

A bound variable x may be renamed to say y so long as y does not occur free in the body of the binding, or in
any annotations of the bound variable, x to be renamed, or later bound variables.

If a bound variable x is renamed, all free occurrences of x in annotations in its bvar element, any following
bvar children of the bind and in the expression in the body of the bind should be renamed.

In the example in the previous section, note how renaming x to produces the equivalent expression forall
. + y = y + , whereas x may not be renamed to y, as y is free in the body of the binding and would be

captured, producing the expression forall y. y + y = y + y which is not equivalent to the original expression.

4.2.6.4 Rendering Binding Constructions

If <ci>b</ci> and <ci>s</ci> are Content MathML expressions that render as the Presentation MathML expres-
sions <mi>B</mi> and <mi>S</mi> then the sample rendering of a binding element is as follows:

Content MathML

<bind><ci>b</ci>
 <bvar><ci>x1</ci></bvar>
 <bvar><ci>...</ci></bvar>
 <bvar><ci>xn</ci></bvar>
 <ci>s</ci>
</bind>

Sample Presentation

<mrow>

 <mi>B</mi>
 <mrow>

 <mi>x1</mi>
 <mo separator="true">,</mo>

 <mi>...</mi>
 <mo separator="true">,</mo>

 <mi>xn</mi>
 </mrow>
 <mo separator="true">.</mo>

 <mi>S</mi>
</mrow>

4.2.7 Structure Sharing <share>

To conserve space in the XML encoding, MathML expression trees can make use of structure sharing.

4 Content Markup

146

4.2.7.1 The share element

Schema Fragment

Class Share

Attributes CommonAtt, src

src Attribute Values URI

Content Empty

The share element has an href attribute used to to reference a MathML expression tree. The value of the href
attribute is a URI specifying the id attribute of the root node of the expression tree. When building a MathML
expression tree, the share element is equivalent to a copy of the MathML expression tree referenced by the
href attribute. Note that this copy is structurally equal, but not identical to the element referenced. The values
of the share will often be relative URI references, in which case they are resolved using the base URI of the
document containing the share element.

For instance, the mathematical object f f f a, a , f a, a , f f a, a , f a, a can be encoded as either one of
the following representations (and some intermediate versions as well).

<apply><ci>f</ci>
 <apply><ci>f</ci>
 <apply><ci>f</ci>
 <ci>a</ci>
 <ci>a</ci>
 </apply>
 <apply><ci>f</ci>
 <ci>a</ci>
 <ci>a</ci>
 </apply>
 </apply>
 <apply><ci>f</ci>
 <apply><ci>f</ci>
 <ci>a</ci>
 <ci>a</ci>
 </apply>
 <apply><ci>f</ci>
 <ci>a</ci>
 <ci>a</ci>
 </apply>
 </apply>
</apply>

<apply><ci>f</ci>
 <apply id="t1"><ci>f</ci>
 <apply id="t11"><ci>f</ci>
 <ci>a</ci>
 <ci>a</ci>
 </apply>
 <share href="#t11"/>

 </apply>
 <share href="#t1"/>

</apply>

4.2.7.2 An Acyclicity Constraint

Say that an element dominates all its children and all elements they dominate. Say also that a share element
dominates its target, i.e. the element that carries the id attribute pointed to by the href attribute. For instance
in the representation on the right above, the apply element with id="t1" and also the second share (with
href="t11") both dominate the apply element with id="t11".

The occurrences of the share element must obey the following global acyclicity constraint: An element may not
dominate itself. For example, the following representation violates this constraint:

<apply id="badid1"><csymbol cd="arith1">divide</csymbol>
 <cn>1</cn>
 <apply><csymbol cd="arith1">plus</csymbol>
 <cn>1</cn>
 <share href="#badid1"/>

4.2 Content MathML Elements Encoding Expression Structure

147

 </apply>
</apply>

Here, the apply element with id="badid1" dominates its third child, which dominates the share element,
which dominates its target: the element with id="badid1". So by transitivity, this element dominates itself. By
the acyclicity constraint, the example is not a valid MathML expression tree. It might be argued that such an
expression could be given the interpretation of the continued fraction 11 + 11 + 11 + ⋯

. However, the procedure of

building an expression tree by replacing share element does not terminate for such an expression, and hence
such expressions are not allowed by Content MathML.

Note that the acyclicity constraints is not restricted to such simple cases, as the following example shows:

<apply id="bar"> <apply id="baz">
 <csymbol cd="arith1">plus</csymbol> <csymbol cd="arith1">plus</csymbol>
 <cn>1</cn> <cn>1</cn>
 <share href="#baz"/> <share href="#bar"/>
</apply> </apply>

Here, the apply with id="bar" dominates its third child, the share with href="#baz". That element domi-
nates its target apply (with id="baz"), which in turn dominates its third child, the share with href="#bar".
Finally, the share with href="#bar" dominates its target, the original apply element with id="bar". So this
pair of representations ultimately violates the acyclicity constraint.

4.2.7.3 Structure Sharing and Binding

Note that the share element is a syntactic referencing mechanism: a share element stands for the exact element
it points to. In particular, referencing does not interact with binding in a semantically intuitive way, since it
allows a phenomenon called variable capture to occur. Consider an example:

<bind id="outer"><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><ci>f</ci>
 <bind id="inner"><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar>
 <share id="copy" href="#orig"/>
 </bind>
 <apply id="orig"><ci>g</ci><ci>x</ci></apply>
 </apply>
</bind>

This represents a term λx . f λx . x , x which has two sub-terms of the form x , one with id="orig"
(the one explicitly represented) and one with id="copy", represented by the share element. In the original,
explicitly-represented term, the variable x is bound by the outer bind element. However, in the copy, the
variable x is bound by the inner bind element. One says that the inner bind has captured the variable x.

Using references that capture variables in this way can easily lead to representation errors, and is not recommen-
ded. For instance, using α-conversion to rename the inner occurrence of x into, say, y leads to the semantically
equivalent expression λx . f λy . y , x . However, in this form, it is no longer possible to share the expres-
sion x . Replacing x with y in the inner bvar without replacing the share element results in a change in
semantics.

4 Content Markup

148

4.2.7.4 Rendering Expressions with Structure Sharing

There are several acceptable renderings for the share element. These include rendering the element as a hyper-
text link to the referenced element and using the rendering of the element referenced by the href attribute.

4.2.8 Attribution via semantics

Content elements can be annotated with additional information via the semantics element. MathML uses the
semantics element to wrap the annotated element and the annotation-xml and annotation elements used
for representing the annotations themselves. The use of the semantics, annotation and annotation-xml is
described in detail Chapter 5 Mixing Markup Languages for Mathematical Expressions.

The semantics element is be considered part of both presentation MathML and Content MathML. MathML
considers a semantics element (strict) Content MathML, if and only if its first child is (strict) Content
MathML.

4.2.9 Error Markup <cerror>

Schema Fragment (Strict) Schema Fragment (Full)

Class Error Error

Attributes CommonAtt CommonAtt, DefEncAtt

Content csymbol, ContExp* csymbol, ContExp*

A content error expression is made up of a csymbol followed by a sequence of zero or more MathML expres-
sions. The initial expression must be a csymbol indicating the kind of error. Subsequent children, if present,
indicate the context in which the error occurred.

The cerror element has no direct mathematical meaning. Errors occur as the result of some action performed
on an expression tree and are thus of real interest only when some sort of communication is taking place. Errors
may occur inside other objects and also inside other errors.

As an example, to encode a division by zero error, one might employ a hypothetical aritherror Content
Dictionary containing a DivisionByZero symbol, as in the following expression:

<cerror>
 <csymbol cd="aritherror">DivisionByZero</csymbol>
 <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>

Note that error markup generally should enclose only the smallest erroneous sub-expression. Thus a cerror will
often be a sub-expression of a bigger one, e.g.

<apply><csymbol cd="relation1">eq</csymbol>
 <cerror>
 <csymbol cd="aritherror">DivisionByZero</csymbol>
 <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
 </cerror>
 <cn>0</cn>
</apply>

The default presentation of a cerror element is an merror expression whose first child is a presentation of
the error symbol, and whose subsequent children are the default presentations of the remaining children of the

4.2 Content MathML Elements Encoding Expression Structure

149

cerror. In particular, if one of the remaining children of the cerror is a presentation MathML expression, it is
used literally in the corresponding merror.

Content MathML

<cerror>
 <csymbol cd="aritherror">DivisionByZero</csymbol>
 <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>

Sample Presentation

<merror>
 <mtext>DivisionByZero: </mtext>
 <mfrac><mi>x</mi><mn>0</mn></mfrac>
</merror>

DivisionByZero: x0
Note that when the context where an error occurs is so nonsensical that its default presentation would not be
useful, an application may provide an alternative representation of the error context. For example:

<cerror>
 <csymbol cd="error">Illegal bound variable</csymbol>
 <cs> <bvar><plus/></bvar> </cs>
</cerror>

4.2.10 Encoded Bytes <cbytes>

Schema Fragment (Strict) Schema Fragment (Full)

Class Cbytes Cbytes

Attributes CommonAtt CommonAtt, DefEncAtt

Content base64 base64

The content of cbytes represents a stream of bytes as a sequence of characters in Base64 encoding, that is it
matches the base64Binary data type defined in [XMLSchemaDatatypes]. All white space is ignored.

The cbytes element is mainly used for OpenMath compatibility, but may be used, as in OpenMath, to encapsu-
late output from a system that may be hard to encode in MathML, such as binary data relating to the internal
state of a system, or image data.

The rendering of cbytes is not expected to represent the content and the proposed rendering is that of an empty
mrow. Typically cbytes is used in an annotation-xml or is itself annotated with Presentation MathML, so
this default rendering should rarely be used.

4.3 Content MathML for Specific Structures

The elements of Strict Content MathML described in the previous section are sufficient to encode logical
assertions and expression structure, and they do so in a way that closely models the standard constructions of
mathematical logic that underlie the foundations of mathematics. As a consequence, Strict markup can be used

4 Content Markup

150

to represent all of mathematics, and is ideal for providing consistent mathematical semantics for all Content
MathML expressions.

At the same time, many notational idioms of mathematics are not straightforward to represent directly with
Strict Content markup. For example, standard notations for sums, integrals, sets, piecewise functions and many
other common constructions require non-obvious technical devices, such as the introduction of lambda functions,
to rigorously encode them using Strict markup. Consequently, in order to make Content MathML easier to
use, a range of additional elements have been provided for encoding such idiomatic constructs more directly.
This section discusses the general approach for encoding such idiomatic constructs, and their Strict Content
equivalents. Specific constructions are discussed in detail in Section 4.4 Content MathML for Specific Operators
and Constants.

Most idiomatic constructions which Content markup addresses fall into about a dozen classes. Some of these
classes, such as container elements, have their own syntax. Similarly, a small number of non-Strict constructions
involve a single element with an exceptional syntax, for example partialdiff. These exceptional elements
are discussed on a case-by-case basis in Section 4.4 Content MathML for Specific Operators and Constants.
However, the majority of constructs consist of classes of operator elements which all share a particular usage of
qualifiers. These classes of operators are described in Section 4.3.4 Operator Classes.

In all cases, non-Strict expressions may be rewritten using only Strict markup. In most cases, the transformation
is completely algorithmic, and may be automated. Rewrite rules for classes of non-Strict constructions are intro-
duced and discussed later in this section, and rewrite rules for exceptional constructs involving a single operator
are given in Section 4.4 Content MathML for Specific Operators and Constants. The complete algorithm for
rewriting arbitrary Content MathML as Strict Content markup is summarized at the end of the Chapter in Section
4.6 The Strict Content MathML Transformation.

4.3.1 Container Markup

Many mathematical structures are constructed from subparts or parameters. The motivating example is a set.
Informally, one thinks of a set as a certain kind of mathematical object that contains a collection of elements.
Thus, it is intuitively natural for the markup for a set to contain, in the XML sense, the markup for its constituent
elements. The markup may define the set elements explicitly by enumerating them, or implicitly by rule, using
qualifier elements. However, in either case, the markup for the elements is contained in the markup for the
set, and consequently this style of representation is termed container markup in MathML. By contrast, Strict
markup represents an instance of a set as the result of applying a function or constructor symbol to arguments.
In this style of markup, the markup for the set construction is a sibling of the markup for the set elements in an
enclosing apply element.

While the two approaches are formally equivalent, container markup is generally more intuitive for non-expert
authors to use, while Strict markup is preferable is contexts where semantic rigor is paramount. In addition,
MathML 2 relied on container markup, and thus container markup is necessary in cases where backward compat-
ibility is required.

MathML provides container markup for the following mathematical constructs: sets, lists, intervals, vectors,
matrices (two elements), piecewise functions (three elements) and lambda functions. There are corresponding
constructor symbols in Strict markup for each of these, with the exception of lambda functions, which corre-
spond to binding symbols in Strict markup. Note that in MathML 2, the term "container markup" was also taken
to include token elements, and the deprecated declare, fn and reln elements, but MathML 3 limits usage of
the term to the above constructs.

The rewrite rules for obtaining equivalent Strict Content markup from container markup depend on the operator
class of the particular operator involved. For details about a specific container element, obtain its operator class
(and any applicable special case information) by consulting the syntax table and discussion for that element in

4.3 Content MathML for Specific Structures

151

Section 4.4 Content MathML for Specific Operators and Constants. Then apply the rewrite rules for that specific
operator class as described in Section 4.3.4 Operator Classes.

4.3.1.1 Container Markup for Constructor Symbols

The arguments to container elements corresponding to constructors may either be explicitly given as a sequence
of child elements, or they may be specified by a rule using qualifiers. The only exceptions are the piecewise,
piece, and otherwise elements used for representing functions with piecewise definitions. The arguments of
these elements must always be specified explicitly.

Here is an example of container markup with explicitly specified arguments:

<set><ci>a</ci><ci>b</ci><ci>c</ci></set>

This is equivalent to the following Strict Content MathML expression:

<apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci>
</apply>

Another example of container markup, where the list of arguments is given indirectly as an expression with a
bound variable. The container markup for the set of even integers is:

<set>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><integers/></domainofapplication>
 <apply><times/><cn>2</cn><ci>x</ci></apply>
</set>

This may be written as follows in Strict Content MathML:

<apply><csymbol cd="set1">map</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><csymbol cd="arith1">times</csymbol>
 <cn>2</cn>
 <ci>x</ci>
 </apply>
 </bind>
 <csymbol cd="setname1">Z</csymbol>
</apply>

4.3.1.2 Container Markup for Binding Constructors

The lambda element is a container element corresponding to the lambda symbol in the fns1 Content Dictionary.
However, unlike the container elements of the preceding section, which purely construct mathematical objects
from arguments, the lambda element performs variable binding as well. Therefore, the child elements of
lambda have distinguished roles. In particular, a lambda element must have at least one bvar child, optionally
followed by qualifier elements, followed by a Content MathML element. This basic difference between the
lambda container and the other constructor container elements is also reflected in the OpenMath symbols to
which they correspond. The constructor symbols have an OpenMath role of "application", while the lambda
symbol has a role of "bind".

4 Content Markup

152

http://www.openmath.org/cd/fns1.xhtml#lambda
http://www.openmath.org/cd/fns1.xhtml

This example shows the use of lambda container element and the equivalent use of bind in Strict Content
MathML

<lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>

<bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar><ci>x</ci>
</bind>

4.3.2 Bindings with <apply>

MathML allows the use of the apply element to perform variable binding in non-Strict constructions instead of
the bind element. This usage conserves backwards compatibility with MathML 2. It also simplifies the encoding
of several constructs involving bound variables with qualifiers as described below.

Use of the apply element to bind variables is allowed in two situations. First, when the operator to be applied
is itself a binding operator, the apply element merely substitutes for the bind element. The logical quantifiers
<forall/>, <exists/> and the container element lambda are the primary examples of this type.

The second situation arises when the operator being applied allows the use of bound variables with qualifiers.
The most common examples are sums and integrals. In most of these cases, the variable binding is to some
extent implicit in the notation, and the equivalent Strict representation requires the introduction of auxiliary
constructs such as lambda expressions for formal correctness.

Because expressions using bound variables with qualifiers are idiomatic in nature, and do not always involve
true variable binding, one cannot expect systematic renaming (alpha-conversion) of variables "bound" with
apply to preserve meaning in all cases. An example for this is the diff element where the bvar term is
technically not bound at all.

The following example illustrates the use of apply with a binding operator. In these cases, the corresponding
Strict equivalent merely replaces the apply element with a bind element:

<apply><forall/>
 <bvar><ci>x</ci></bvar>
 <apply><geq/><ci>x</ci><ci>x</ci></apply>
</apply>

The equivalent Strict expression is:

<bind><csymbol cd="logic1">forall</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply>
</bind>

In this example, the sum operator is not itself a binding operator, but bound variables with qualifiers are
implicit in the standard notation, which is reflected in the non-Strict markup. In the equivalent Strict repre-
sentation, it is necessary to convert the summand into a lambda expression, and recast the qualifiers as an
argument expression:

<apply><sum/>
 <bvar><ci>i</ci></bvar>

4.3 Content MathML for Specific Structures

153

 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><cn>100</cn></uplimit>
 <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>

The equivalent Strict expression is:

<apply><csymbol cd="arith1">sum</csymbol>
 <apply><csymbol cd="interval1">integer_interval</csymbol>
 <cn>0</cn>
 <cn>100</cn>
 </apply>
 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>i</ci></bvar>
 <apply><csymbol cd="arith1">power</csymbol>
 <ci>x</ci>
 <ci>i</ci>
 </apply>
 </bind>
</apply>

4.3.3 Qualifiers

Many common mathematical constructs involve an operator together with some additional data. The additional
data is either implicit in conventional notation, such as a bound variable, or thought of as part of the operator,
as is the case with the limits of a definite integral. MathML 3 uses qualifier elements to represent the additional
data in such cases.

Qualifier elements are always used in conjunction with operator or container elements. Their meaning is idio-
matic, and depends on the context in which they are used. When used with an operator, qualifiers always follow
the operator and precede any arguments that are present. In all cases, if more than one qualifier is present, they
appear in the order bvar, lowlimit, uplimit, interval, condition, domainofapplication, degree,
momentabout, logbase.

The precise function of qualifier elements depends on the operator or container that they modify. The majority
of use cases fall into one of several categories, discussed below, and usage notes for specific operators and
qualifiers are given in Section 4.4 Content MathML for Specific Operators and Constants.

4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit>

Class qualifier

Attributes CommonAtt

Content ContExp

(For the syntax of interval see Section 4.4.1.1 Interval <interval>.)

The primary use of domainofapplication, interval, uplimit, lowlimit and condition is to restrict the
values of a bound variable. The most general qualifier is domainofapplication. It is used to specify a set
(perhaps with additional structure, such as an ordering or metric) over which an operation is to take place. The
interval qualifier, and the pair lowlimit and uplimit also restrict a bound variable to a set in the special
case where the set is an interval. The condition qualifier, like domainofapplication, is general, and can
be used to restrict bound variables to arbitrary sets. However, unlike the other qualifiers, it restricts the bound
variable by specifying a Boolean-valued function of the bound variable. Thus, condition qualifiers always
contain instances of the bound variable, and thus require a preceding bvar, while the other qualifiers do not. The

4 Content Markup

154

other qualifiers may even be used when no variables are being bound, e.g. to indicate the restriction of a function
to a subdomain.

In most cases, any of the qualifiers capable of representing the domain of interest can be used interchangeably.
The most general qualifier is domainofapplication, and therefore has a privileged role. It is the preferred
form, unless there are particular idiomatic reasons to use one of the other qualifiers, e.g. limits for an integral. In
MathML 3, the other forms are treated as shorthand notations for domainofapplication because they may all
be rewritten as equivalent domainofapplication constructions. The rewrite rules to do this are given below.
The other qualifier elements are provided because they correspond to common notations and map more easily to
familiar presentations. Therefore, in the situations where they naturally arise, they may be more convenient and
direct than domainofapplication.

To illustrate these ideas, consider the following examples showing alternative representations of a definite inte-
gral. Let C denote the interval from 0 to 1, and f x = x2. Then domainofapplication could be used express
the integral of a function f over C in this way:

<apply><int/>
 <domainofapplication>
 <ci type="set">C</ci>
 </domainofapplication>
 <ci type="function">f</ci>
</apply>

Note that no explicit bound variable is identified in this encoding, and the integrand is a function. Alternatively,
the interval qualifier could be used with an explicit bound variable:

<apply><int/>
 <bvar><ci>x</ci></bvar>
 <interval><cn>0</cn><cn>1</cn></interval>
 <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>

The pair lowlimit and uplimit can also be used. This is perhaps the most "standard" representation of this
integral:

<apply><int/>
 <bvar><ci>x</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><cn>1</cn></uplimit>
 <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>

Finally, here is the same integral, represented using a condition on the bound variable:

<apply><int/>
 <bvar><ci>x</ci></bvar>
 <condition>
 <apply><and/>
 <apply><leq/><cn>0</cn><ci>x</ci></apply>
 <apply><leq/><ci>x</ci><cn>1</cn></apply>
 </apply>
 </condition>

4.3 Content MathML for Specific Structures

155

 <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>

Note the use of the explicit bound variable within the condition term. Note also that when a bound variable is
used, the integrand is an expression in the bound variable, not a function.

The general technique of using a condition element together with domainofapplication is quite powerful.
For example, to extend the previous example to a multivariate domain, one may use an extra bound variable and
a domain of application corresponding to a cartesian product:

<apply><int/>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <domainofapplication>
 <set>
 <bvar><ci>t</ci></bvar>
 <bvar><ci>u</ci></bvar>
 <condition>
 <apply><and/>
 <apply><leq/><cn>0</cn><ci>t</ci></apply>
 <apply><leq/><ci>t</ci><cn>1</cn></apply>
 <apply><leq/><cn>0</cn><ci>u</ci></apply>
 <apply><leq/><ci>u</ci><cn>1</cn></apply>
 </apply>
 </condition>
 <list><ci>t</ci><ci>u</ci></list>
 </set>
 </domainofapplication>
 <apply><times/>
 <apply><power/><ci>x</ci><cn>2</cn></apply>
 <apply><power/><ci>y</ci><cn>3</cn></apply>
 </apply>
</apply>

Note that the order of the inner and outer bound variables is significant.

Mappings to Strict Content MathML

When rewriting expressions to Strict Content MathML, qualifier elements are removed via a series of rules
described in this section. The general algorithm for rewriting a MathML expression involving qualifiers proceeds
in two steps. First, constructs using the interval, condition, uplimit and lowlimit qualifiers are conver-
ted to constructs using only domainofapplication. Second, domainofapplication expressions are then
rewritten as Strict Content markup.

Rewrite: interval qualifier

<apply><ci>H</ci>
 <bvar><ci>x</ci></bvar>
 <lowlimit><ci>a</ci></lowlimit>
 <uplimit><ci>b</ci></uplimit>
 <ci>C</ci>
</apply>

<apply><ci>H</ci>
 <bvar><ci>x</ci></bvar>

4 Content Markup

156

 <domainofapplication>

 <apply><csymbol cd="interval1">interval</csymbol>
 <ci>a</ci>
 <ci>b</ci>
 </apply>
 </domainofapplication>

 <ci>C</ci>
</apply>

The symbol used in this translation depends on the head of the application, denoted by <ci>H</ci> here. By
default interval should be used, unless the semantics of the head term can be determined and indicate a more
specific interval symbols. In particular, several predefined Content MathML element should be used with
more specific interval symbols. If the head is int then oriented_interval is used. When the head term is sum
or product, integer_interval should be used.

The above technique for replacing lowlimit and uplimit qualifiers with a domainofapplication ele-
ment is also used for replacing the interval qualifier.

The condition qualifier restricts a bound variable by specifying a Boolean-valued expression on a larger
domain, specifying whether a given value is in the restricted domain. The condition element contains a single
child that represents the truth condition. Compound conditions are formed by applying Boolean operators such as
and in the condition.

Rewrite: condition

To rewrite an expression using the condition qualifier as one using domainofapplication,

<bvar><ci>x1</ci></bvar>
<bvar><ci>xn</ci></bvar>
<condition><ci>P</ci></condition>

is rewritten to

<bvar><ci>x1</ci></bvar>
<bvar><ci>xn</ci></bvar>
<domainofapplication>
 <apply><csymbol cd="set1">suchthat</csymbol>

 <ci>R</ci>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x1</ci></bvar>
 <bvar><ci>xn</ci></bvar>
 <ci>P</ci>
 </bind>
 </apply>
</domainofapplication>

If the apply has a domainofapplication (perhaps originally expressed as interval or an uplimit/
lowlimit pair) then that is used for <ci>R</ci>. Otherwise <ci>R</ci> is a set determined by the type
attribute of the bound variable as specified in Section 4.2.2.2 Non-Strict uses of <ci>, if that is present. If the
type is unspecified, the translation introduces an unspecified domain via content identifier <ci>R</ci>.

4.3 Content MathML for Specific Structures

157

http://www.openmath.org/cd/interval1.xhtml#interval
http://www.openmath.org/cd/interval1.xhtml#oriented_interval
http://www.openmath.org/cd/interval1.xhtml#integer_interval

By applying the rules above, expression using the interval, condition, uplimit and lowlimit can be
rewritten using only domainofapplication. Once a domainofapplication has been obtained, the final
mapping to Strict markup is accomplished using the following rules:

Rewrite: restriction

An application of a function that is qualified by the domainofapplication qualifier (expressed by an
apply element without bound variables) is converted to an application of a function term constructed with the
restriction symbol.

<apply><ci>F</ci>
 <domainofapplication>

 <ci>C</ci>
 </domainofapplication>

 <ci>a1</ci>
 <ci>an</ci>
</apply>

may be written as:

<apply>
 <apply><csymbol cd="fns1">restriction</csymbol>

 <ci>F</ci>
 <ci>C</ci>
 </apply>

 <ci>a1</ci>
 <ci>an</ci>
</apply>

In general, an application involving bound variables and (possibly) domainofapplication is rewritten using
the following rule, which makes the domain the first positional argument of the application, and uses the lambda
symbol to encode the variable bindings. Certain classes of operator have alternative rules, as described below.

Rewrite: apply bvar domainofapplication

A content MathML expression with bound variables and domainofapplication

<apply><ci>H</ci>
 <bvar><ci>v1</ci></bvar>
 ...

 <bvar><ci>vn</ci></bvar>
 <domainofapplication><ci>D</ci></domainofapplication>
 <ci>A1</ci>
 ...

 <ci>Am</ci>
</apply>

is rewritten to

<apply><ci>H</ci>
 <ci>D</ci>
 <bind><csymbol cd="fns1">lambda</csymbol>

4 Content Markup

158

http://www.openmath.org/cd/fns1.xhtml#restriction

 <bvar><ci>v1</ci></bvar>
 ...

 <bvar><ci>vn</ci></bvar>
 <ci>A1</ci>
 </bind>
 ...
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>v1</ci></bvar>
 ...

 <bvar><ci>vn</ci></bvar>
 <ci>Am</ci>
 </bind>
</apply>

If there is no domainofapplication qualifier the <ci>D</ci> child is omitted.

4.3.3.2 Uses of <degree>

Class qualifier

Attributes CommonAtt

Content ContExp

The degree element is a qualifier used to specify the "degree" or "order" of an operation. MathML uses
the degree element in this way in three contexts: to specify the degree of a root, a moment, and in various
derivatives. Rather than introduce special elements for each of these families, MathML provides a single general
construct, the degree element in all three cases.

Note that the degree qualifier is not used to restrict a bound variable in the same sense of the qualifiers
discussed above. Indeed, with roots and moments, no bound variable is involved at all, either explicitly or
implicitly. In the case of differentiation, the degree element is used in conjunction with a bvar, but even in
these cases, the variable may not be genuinely bound.

For the usage of degree with the root and moment operators, see the discussion of those operators below.
The usage of degree in differentiation is more complex. In general, the degree element indicates the order
of the derivative with respect to that variable. The degree element is allowed as the second child of a bvar
element identifying a variable with respect to which the derivative is being taken. Here is an example of a second
derivative using the degree qualifier:

<apply><diff/>
 <bvar>
 <ci>x</ci>
 <degree><cn>2</cn></degree>
 </bvar>
 <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>

For details see Section 4.4.4.2 Differentiation <diff/> and Section 4.4.4.3 Partial Differentiation
<partialdiff/>.

4.3.3.3 Uses of <momentabout> and <logbase>

The qualifiers momentabout and logbase are specialized elements specifically for use with the moment and
log operators respectively. See the descriptions of those operators below for their usage.

4.3 Content MathML for Specific Structures

159

4.3.4 Operator Classes

The Content MathML elements described in detail in the next section may be broadly separated into classes. The
class of each element is shown in the syntax table that introduces the element in Section 4.4 Content MathML for
Specific Operators and Constants. The class gives an indication of the general intended mathematical usage of
the element, and also determines its usage as determined by the schema. The class also determines the applicable
rewrite rules for mapping to Strict Content MathML. This section presents the rewrite rules for each of the
operator classes.

The rules in this section cover the use cases applicable to specific operator classes. Special-case rewrite rules for
individual elements are discussed in the sections below. However, the most common usage pattern is generic,
and is used by operators from almost all operator classes. It consists of applying an operator to an explicit list
of arguments using an apply element. In these cases, rewriting to Strict Content MathML is simply a matter of
replacing the empty element with an appropriate csymbol, as listed in the syntax tables in Section 4.4 Content
MathML for Specific Operators and Constants. This is summarized in the following rule.

Rewrite: element

For example,

<plus/>

is equivalent to the Strict form

<csymbol cd="arith1">plus</csymbol>

In MathML 2, the definitionURL attribute could be used to redefine or modify the meaning of an operator
element. When the definitionURL attribute is present, the value for the cd attribute on the csymbol should
be determined by the definitionURL value if possible. The correspondence between cd and definitionURL
values is described Section 4.2.3.2 Non-Strict uses of <csymbol>.

4.3.4.1 N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-
constructor)

Many MathML operators may be used with an arbitrary number of arguments. The corresponding OpenMath
symbols for elements in these classes also take an arbitrary number of arguments. In all such cases, either
the arguments my be given explicitly as children of the apply or bind element, or the list may be specified
implicitly via the use of qualifier elements.

4.3.4.1.1 Schema Patterns

The elements representing these n-ary operators are specified in the following schema patterns in Appendix A
Parsing MathML: nary-arith.class, nary-functional.class, nary-logical.class, nary-linalg.class, nary-set.class,
nary-constructor.class.

4.3.4.1.2 Rewriting to Strict Content MathML

If the argument list is given explicitly, the Rewrite: element rule applies.

Any use of qualifier elements is expressed in Strict Content MathML, via explicitly applying the function to
a list of arguments using the apply_to_list symbol as shown in the following rule. The rule only considers the

4 Content Markup

160

http://www.openmath.org/cd/fns2.xhtml#apply_to_list

domainofapplication qualifier as other qualifiers may be rewritten to domainofapplication as described
earlier.

Rewrite: n-ary domainofapplication

An expression of the following form, where <union/> represents any element of the relevant class and
<ci>expression-in-x</ci> is an arbitrary expression involving the bound variable(s)

<apply><union/>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>D</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>

is rewritten to

<apply><csymbol cd="fns2">apply_to_list</csymbol>

 <csymbol cd="set1">union</csymbol>
 <apply><csymbol cd="list1">map</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>

 <ci>D</ci>
 </apply>
</apply>

The above rule applies to all symbols in the listed classes. In the case of nary-set.class the choice of Content
Dictionary to use depends on the type attribute on the arguments, defaulting to set1, but multiset1 should be
used if type="multiset".

Note that the members of the nary-constructor.class, such as vector, use constructor syntax where the argu-
ments and qualifiers are given as children of the element rather than as children of a containing apply. In this
case, the above rules apply with the analogous syntactic modifications.

4.3.4.2 N-ary Constructors for set and list (class nary-setlist-constructor)

The use of set and list follows the same format as other n-ary constructors, however when rewriting to Strict
Content MathML a variant of the above rule is used. This is because the map symbol implicitly constructs the
required set or list, and apply_to_list is not needed in this case.

4.3.4.2.1 Schema Patterns

The elements representing these n-ary operators are specified in the schema pattern nary-setlist-constructor.class.

4.3.4.2.2 Rewriting to Strict Content MathML

If the argument list is given explicitly, the Rewrite: element rule applies.

When qualifiers are used to specify the list of arguments, the following rule is used.

4.3 Content MathML for Specific Structures

161

http://www.openmath.org/cd/set1.xhtml
http://www.openmath.org/cd/multiset1.xhtml
http://www.openmath.org/cd/set1.xhtml#map
http://www.openmath.org/cd/fns2.xhtml#apply_to_list

Rewrite: n-ary setlist domainofapplication

An expression of the following form, where <set/> is either of the elements set or list and <ci>expression-in-
x</ci> is an arbitrary expression involving the bound variable(s)

<set>

 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>D</ci></domainofapplication>
 <ci>expression-in-x</ci>
</set>

is rewritten to

<apply><csymbol cd="set1">map</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>

 <ci>D</ci>
</apply>

Note that when <ci>D</ci> is already a set or list of the appropriate type for the container element, and the
lambda function created from <ci>expression-in-x</ci> is the identity, the entire container element should be
rewritten directly as <ci>D</ci>.

In the case of set, the choice of Content Dictionary and symbol depends on the value of the type attribute
of the arguments. By default the set symbol is used, but if one of the arguments has type attribute with value
"multiset", the multiset symbol is used. If there is a type attribute with value other than "set" or "multiset" the
set symbol should be used, and the arguments should be annotated with their type by rewriting the type attribute
using the rule Rewrite: attributes.

4.3.4.3 N-ary Relations (classes nary-reln, nary-set-reln)

MathML allows transitive relations to be used with multiple arguments, to give a natural expression to "chains"
of relations such as a < b < c < d. However unlike the case of the arithmetic operators, the underlying symbols
used in the Strict Content MathML are classed as binary, so it is not possible to use apply_to_list as in the
previous section, but instead a similar function predicate_on_list is used, the semantics of which is essentially to
take the conjunction of applying the predicate to elements of the domain two at a time.

4.3.4.3.1 Schema Patterns

The elements representing these n-ary operators are specified in the following schema patterns in Appendix A
Parsing MathML: nary-reln.class, nary-set-reln.class.

4.3.4.3.2 Rewriting to Strict Content MathML

Rewrite: n-ary relations

An expression of the form

4 Content Markup

162

http://www.openmath.org/cd/set1.xhtml#set
http://www.openmath.org/cd/multiset1.xhtml#multiset
http://www.openmath.org/cd/set1.xhtml#set
http://www.openmath.org/cd/fns2.xhtml#apply_to_list
http://www.openmath.org/cd/fns2.xhtml#predicate_on_list

<apply><lt/>
 <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>
</apply>

rewrites to Strict Content MathML

<apply><csymbol cd="fns2">predicate_on_list</csymbol>

 <csymbol cd="reln1">lt</csymbol>
 <apply><csymbol cd="list1">list</csymbol>

 <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>
 </apply>
</apply>

Rewrite: n-ary relations bvar

An expression of the form

<apply><lt/>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>R</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>

where <ci>expression-in-x</ci> is an arbitrary expression involving the bound variable, rewrites to the Strict
Content MathML

<apply><csymbol cd="fns2">predicate_on_list</csymbol>

 <csymbol cd="reln1">lt</csymbol>
 <apply><csymbol cd="list1">map</csymbol>

 <ci>R</ci>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>
 </apply>
</apply>

The above rules apply to all symbols in classes nary-reln.class and nary-set-reln.class. In the latter case
the choice of Content Dictionary to use depends on the type attribute on the symbol, defaulting to set1, but
multiset1 should be used if type="multiset".

4.3.4.4 N-ary/Unary Operators (classes nary-minmax, nary-stats)

The MathML elements, max, min and some statistical elements such as mean may be used as a n-ary function as
in the above classes, however a special interpretation is given in the case that a single argument is supplied. If a
single argument is supplied the function is applied to the elements represented by the argument.

The underlying symbol used in Strict Content MathML for these elements is Unary and so if the MathML is
used with 0 or more than 1 arguments, the function is applied to the set constructed from the explicitly supplied
arguments according to the following rule.

4.3 Content MathML for Specific Structures

163

http://www.openmath.org/cd/set1.xhtml
http://www.openmath.org/cd/multiset1.xhtml

4.3.4.4.1 Schema Patterns

The elements representing these n-ary operators are specified in the following schema patterns in Appendix A
Parsing MathML: nary-minmax.class, nary-stats.class.

4.3.4.4.2 Rewriting to Strict Content MathML

Rewrite: n-ary unary set

When an element, <max/>, of class nary-stats or nary-minmax is applied to an explicit list of 0 or 2 or more
arguments, <ci>a1</ci><ci>a2</ci><ci>an</ci>

<apply><max/><ci>a1</ci><ci>a2</ci><ci>an</ci></apply>

It is is translated to the unary application of the symbol <csymbol cd="minmax1" name="max"/> as speci-
fied in the syntax table for the element to the set of arguments, constructed using the <csymbol cd="set1"
name="set"/> symbol.

<apply><csymbol cd="minmax1">max</csymbol>
 <apply><csymbol cd="set1">set</csymbol>

 <ci>a1</ci><ci>a2</ci><ci>an</ci>
 </apply>
</apply>

Like all MathML n-ary operators, The list of arguments may be specified implicitly using qualifier elements.
This is expressed in Strict Content MathML using the following rule, which is similar to the rule Rewrite: n-ary
domainofapplication but differs in that the symbol can be directly applied to the constructed set of arguments and
it is not necessary to use apply_to_list.

Rewrite: n-ary unary domainofapplication

An expression of the following form, where <max/> represents any element of the relevant class and
<ci>expression-in-x</ci> is an arbitrary expression involving the bound variable(s)

<apply><max/>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>D</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>

is rewritten to

<apply><csymbol cd="minmax1">max</csymbol>
 <apply><csymbol cd="set1">map</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>

 <ci>D</ci>
 </apply>
</apply>

4 Content Markup

164

http://www.openmath.org/cd/fns2.xhtml#apply_to_list

Note that when <ci>D</ci> is already a set and the lambda function created from <ci>expression-in-x</ci> is the
identity, the domainofapplication term should should be rewritten directly as <ci>D</ci>.

If the element is applied to a single argument the set symbol is not used and the symbol is applied directly to the
argument.

Rewrite: n-ary unary single

When an element, <max/>, of class nary-stats or nary-minmax is applied to a single argument,

<apply><max/><ci>a</ci></apply>

It is is translated to the unary application of the symbol in the syntax table for the element.

<apply><csymbol cd="minmax1">max</csymbol> <ci>a</ci> </apply>

Note: Earlier versions of MathML were not explicit about the correct interpretation of elements in this class, and
left it undefined as to whether an expression such as max(X) was a trivial application of max to a singleton, or
whether it should be interpreted as meaning the maximum of values of the set X. Applications finding that the
rule Rewrite: n-ary unary single can not be applied as the supplied argument is a scalar may wish to use the rule
Rewrite: n-ary unary set as an error recovery. As a further complication, in the case of the statistical functions the
Content Dictionary to use in this case depends on the desired interpretation of the argument as a set of explicit
data or a random variable representing a distribution.

4.3.4.5 Binary Operators (classes binary-arith, binary-logical, binary-reln, binary-linalg, binary-set)

Binary operators take two arguments and simply map to OpenMath symbols via Rewrite: element without the
need of any special rewrite rules. The binary constructor interval is similar but uses constructor syntax in
which the arguments are children of the element, and the symbol used depends on the type element as described
in Section 4.4.1.1 Interval <interval>

4.3.4.5.1 Schema Patterns

The elements representing these binary operators are specified in the following schema patterns in Appendix A
Parsing MathML: binary-arith.class, binary-logical.class, binary-reln.class, binary-linalg.class, binary-set.class.

4.3.4.6 Unary Operators (classes unary-arith, unary-linalg, unary-functional, unary-set, unary-
elementary, unary-veccalc)

Unary operators take a single argument and map to OpenMath symbols via Rewrite: element without the need of
any special rewrite rules.

4.3.4.6.1 Schema Patterns

The elements representing these unary operators are specified in the following schema patterns in Appen-
dix A Parsing MathML: unary-arith.class, unary-functional.class, unary-set.class, unary-elementary.class, unary-
veccalc.class.

4.3 Content MathML for Specific Structures

165

http://www.openmath.org/cd/set1.xhtml#set

4.3.4.7 Constants (classes constant-arith, constant-set)

Constant symbols relate to mathematical constants such as e and true and also to names of sets such as the Real
Numbers, and Integers. In Strict Content MathML, they rewrite simply to the corresponding symbol listed in the
syntax tables for these elements in Section 4.4.10 Constant and Symbol Elements.

4.3.4.7.1 Schema Patterns

The elements representing these constants are specified in the schema patterns constant-arith.class and constant-
set.class.

4.3.4.8 Quantifiers (class quantifier)

The Quantifier class is used for the forall and exists quantifiers of predicate calculus.

4.3.4.8.1 Schema Patterns

The elements representing quantifiers are specified in the schema pattern quantifier.class.

4.3.4.8.2 Rewriting to Strict Content MathML

If used with bind and no qualifiers, then the interpretation in Strict Content MathML is simple. In general if
used with apply or qualifiers, the interpretation in Strict Content MathML is via the following rule.

Rewrite: quantifier

An expression of following form where <exists/> denotes an element of class quantifier and <ci>expression-in-
x</ci> is an arbitrary expression involving the bound variable(s)

<apply><exists/>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>D</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>

is rewritten to an expression

<bind><csymbol cd="quant1">exists</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><csymbol cd="logic1">and</csymbol>
 <apply><csymbol cd="set1">in</csymbol><ci>x</ci><ci>D</ci></apply>
 <ci>expression-in-x</ci>
 </apply>
</bind>

where the symbols <csymbol cd="quant1">exists</csymbol> and <csymbol cd="logic1">and
</csymbol> are as specified in the syntax table of the element. (The additional symbol being and in the
case of exists and implies in the case of forall.) When no domainofapplication is present, no logical
conjunction is necessary, and the translation is direct.

4 Content Markup

166

http://www.openmath.org/cd/logic1.xhtml#and
http://www.openmath.org/cd/logic1.xhtml#implies

4.3.4.9 Other Operators (classes lambda, interval, int, diff partialdiff, sum, product, limit)

Special purpose classes, described in the sections for the appropriate elements

4.3.4.9.1 Schema Patterns

The elements are specified in the following schema patterns in Appendix A Parsing MathML: lambda.class,
interval.class, int.class, partialdiff.class, sum.class, product.class, limit.class.

4.3.5 Non-strict Attributes

A number of content MathML elements such as cn and interval allow attributes to specialize the semantics
of the objects they represent. For these cases, special rewrite rules are given on a case-by-case basis in Section
4.4 Content MathML for Specific Operators and Constants. However, content MathML elements also accept
attributes shared all MathML elements, and depending on the context, may also contain attributes from other
XML namespaces. Such attributes must be rewritten in alternative form in Strict Content Markup.

Rewrite: attributes

For instance,

<ci class="foo" xmlns:other="http://example.com" other:att="bla">x</ci>

is rewritten to

<semantics>

 <ci>x</ci>
 <annotation cd="mathmlattr"

 name="class" encoding="text/plain">foo</annotation>
 <annotation-xml cd="mathmlattr" name="foreign" encoding="MathML-Content">
 <apply><csymbol cd="mathmlattr">foreign_attribute</csymbol>

 <cs>http://example.com</cs>
 <cs>other</cs>
 <cs>att</cs>
 <cs>bla</cs>
 </apply>
 </annotation-xml>
</semantics>

For MathML attributes not allowed in Strict Content MathML the content dictionary mathmlattr is referenced,
which provides symbols for all attributes allowed on content MathML elements.

4.4 Content MathML for Specific Operators and Constants

This section presents elements representing a core set of mathematical operators, functions and constants. Most
are empty elements, covering the subject matter of standard mathematics curricula up to the level of calculus.
The remaining elements are container elements for sets, intervals, vectors and so on. For brevity, all elements
defined in this section are sometimes called operator elements.

Each subsection below discusses a specific operator element, beginning with a syntax table, giving the elements
operator class. Special case rules for rewriting as Strict Markup are introduced as needed. However, in most

4.4 Content MathML for Specific Operators and Constants

167

http://www.openmath.org/cd/mathmlattr.xhtml

cases, the generic rewrite rules for the appropriate operator class is sufficient. In particular, unless otherwise
indicated, elements are to be rewritten using the default Rewrite: element rule. Note, however, that all elements
in this section must be rewritten in some fashion, since they are not allowed in Strict Content markup.

In MathML 2, the definitionURL attribute could be used to redefine or modify the meaning of an operator
element. This use of the definitionURL attribute is deprecated in MathML 3. Instead a csymbol element
should be used. In general, the value of cd attribute on the csymbol will correspond to the definitionURL
value.

4.4.1 Functions and Inverses

4.4.1.1 Interval <interval>

Class interval

Attributes CommonAtt, DefEncAtt, closure?

Content ContExp, ContExp

OM Symbols interval_cc, interval_oc, interval_co, interval_oo

The interval element is a container element used to represent simple mathematical intervals of the real
number line. It takes an optional attribute closure, with a default value of "closed".

Content MathML

<interval closure="open"><ci>x</ci><cn>1</cn></interval>

<interval closure="closed"><cn>0</cn><cn>1</cn></interval>

<interval closure="open-closed"><cn>0</cn><cn>1</cn></interval>

<interval closure="closed-open"><cn>0</cn><cn>1</cn></interval>

Sample Presentation

<mfenced><mi>x</mi><mn>1</mn></mfenced>

x, 1
<mfenced open="[" close="]"><mn>0</mn><mn>1</mn></mfenced>

0, 1
<mfenced open="(" close="]"><mn>0</mn><mn>1</mn></mfenced>

0, 1
<mfenced open="[" close=")"><mn>0</mn><mn>1</mn></mfenced>

0, 1
Mapping to Strict Content MathML

4 Content Markup

168

http://www.openmath.org/cd/interval1.xhtml#interval_cc
http://www.openmath.org/cd/interval1.xhtml#interval_oc
http://www.openmath.org/cd/interval1.xhtml#interval_co
http://www.openmath.org/cd/interval1.xhtml#interval_oo

In Strict markup, the interval element corresponds to one of four symbols from the interval1 content diction-
ary. If closure has the value "open" then interval corresponds to the interval_oo. With the value "closed"
interval corresponds to the symbol interval_cc, with value "open-closed" to interval_oc, and with "closed-
open" to interval_co.

4.4.1.2 Inverse <inverse>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols inverse

The inverse element is applied to a function in order to construct a generic expression for the functional
inverse of that function. The inverse element may either be applied to arguments, or it may appear alone, in
which case it represents an abstract inversion operator acting on other functions.

Content MathML

<apply><inverse/>
 <ci> f </ci>
</apply>

Sample Presentation

<msup><mi>f</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>

f −1
Content MathML

<apply>
 <apply><inverse/><ci type="matrix">A</ci></apply>
 <ci>a</ci>
</apply>

Sample Presentation

<mrow>
 <msup><mi>A</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>a</mi></mfenced>
</mrow>

A −1 a
4.4.1.3 Lambda <lambda>

Class lambda

Attributes CommonAtt, DefEncAtt

Content BvarQ, DomainQ, ContExp

Qualifiers BvarQ, DomainQ

OM Symbols lambda

4.4 Content MathML for Specific Operators and Constants

169

http://www.openmath.org/cd/interval1.xhtml
http://www.openmath.org/cd/interval1.xhtml#interval_oo
http://www.openmath.org/cd/interval1.xhtml#interval_cc
http://www.openmath.org/cd/interval1.xhtml#interval_oc
http://www.openmath.org/cd/interval1.xhtml#interval_co
http://www.openmath.org/cd/fns1.xhtml#inverse
http://www.openmath.org/cd/fns1.xhtml#lambda

The lambda element is used to construct a user-defined function from an expression, bound variables, and
qualifiers. In a lambda construct with n (possibly 0) bound variables, the first n children are bvar elements
that identify the variables that are used as placeholders in the last child for actual parameter values. The bound
variables can be restricted by an optional domainofapplication qualifier or one of its shorthand notations.
The meaning of the lambda construct is an n-ary function that returns the expression in the last child where the
bound variables are replaced with the respective arguments.

The domainofapplication child restricts the possible values of the arguments of the constructed function. For
instance, the following lambda construct represents a function on the integers.

<lambda>
 <bvar><ci> x </ci></bvar>
 <domainofapplication><integers/></domainofapplication>
 <apply><sin/><ci> x </ci></apply>
</lambda>

If a lambda construct does not contain bound variables, then the lambda construct is superfluous and may
be removed, unless it also contains a domainofapplication construct. In that case, if the last child of the
lambda construct is itself a function, then the domainofapplication restricts its existing functional argu-
ments, as in this example, which is a variant representation for the function above.

<lambda>
 <domainofapplication><integers/></domainofapplication>
 <sin/>
</lambda>

Otherwise, if the last child of the lambda construct is not a function, say a number, then the lambda construct
will not be a function, but the same number, and any domainofapplication is ignored.

Content MathML

<lambda>
 <bvar><ci>x</ci></bvar>
 <apply><sin/>
 <apply><plus/><ci>x</ci><cn>1</cn></apply>
 </apply>
</lambda>

Sample Presentation

<mrow>
 <mi>λ<!--GREEK SMALL LETTER LAMDA--></mi>
 <mi>x</mi>
 <mo>.</mo>
 <mfenced>
 <mrow>
 <mi>sin</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow>
 </mrow>
 </mfenced>
</mrow>

4 Content Markup

170

λx . sin x + 1
<mrow>
 <mi>x</mi>
 <mo>↦<!--RIGHTWARDS ARROW FROM BAR--></mo>
 <mrow>
 <mi>sin</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow>
 </mrow>
</mrow>

x sin x + 1
Mapping to Strict Markup

Rewrite: lambda

If the lambda element does not contain qualifiers, the lambda expression is directly translated into a bind
expression.

<lambda>

 <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
 <ci>expression-in-x1-xn</ci>
</lambda>

rewrites to the Strict Content MathML

<bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
 <ci>expression-in-x1-xn</ci>
</bind>

Rewrite: lambda domainofapplication

If the lambda element does contain qualifiers, the qualifier may be rewritten to domainofapplication
and then the lambda expression is translated to a function term constructed with lambda and restricted to the
specified domain using restriction.

<lambda>

 <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
 <domainofapplication><ci>D</ci></domainofapplication>
 <ci>expression-in-x1-xn</ci>
</lambda>

rewrites to the Strict Content MathML

<apply><csymbol cd="fns1">restriction</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
 <ci>expression-in-x1-xn</ci>
 </bind>

4.4 Content MathML for Specific Operators and Constants

171

http://www.openmath.org/cd/fns1.xhtml#lambda
http://www.openmath.org/cd/fns1.xhtml#restriction

 <ci>D</ci>
</apply>

4.4.1.4 Function composition <compose/>

Class nary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols left_compose

The compose element represents the function composition operator. Note that MathML makes no assumption
about the domain and codomain of the constituent functions in a composition; the domain of the resulting
composition may be empty.

The compose element is a commutative n-ary operator. Consequently, it may be lifted to the induced operator
defined on a collection of arguments indexed by a (possibly infinite) set by using qualifier elements as described
in Section 4.3.4.1 N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-
constructor).

Content MathML

<apply><compose/><ci>f</ci><ci>g</ci><ci>h</ci></apply>

Sample Presentation

<mrow><mi>f</mi><mo>∘<!--RING OPERATOR--></mo><mi>g</mi><mo>∘<!--RING

OPERATOR--></mo><mi>h</mi></mrow>

f ∘ ∘ ℎ
Content MathML

<apply><eq/>
 <apply>
 <apply><compose/><ci>f</ci><ci>g</ci></apply>
 <ci>x</ci>
 </apply>
 <apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>
</apply>

Sample Presentation

<mrow>
 <mrow>
 <mrow><mo>(</mo><mi>f</mi><mo>∘<!--RING OPERATOR--></mo><mi>g</mi>

<mo>)</mo></mrow>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>x</mi></mfenced>
 </mrow>
 <mo>=</mo>
 <mrow>

4 Content Markup

172

http://www.openmath.org/cd/fns1.xhtml#left_compose

 <mi>f</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced>
 <mrow>
 <mi>g</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>x</mi></mfenced>
 </mrow>
 </mfenced>
 </mrow>
</mrow>

f ∘ x = f x
4.4.1.5 Identity function <ident/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols identity

The ident element represents the identity function. Note that MathML makes no assumption about the domain
and codomain of the represented identity function, which depends on the context in which it is used.

Content MathML

<apply><eq/>
 <apply><compose/>
 <ci type="function">f</ci>
 <apply><inverse/>
 <ci type="function">f</ci>
 </apply>
 </apply>
 <ident/>
</apply>

Sample Presentation

<mrow>
 <mrow>
 <mi>f</mi>
 <mo>∘<!--RING OPERATOR--></mo>
 <msup><mi>f</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>
 </mrow>
 <mo>=</mo>
 <mi>id</mi>
</mrow>

f ∘ f −1 = id

4.4 Content MathML for Specific Operators and Constants

173

http://www.openmath.org/cd/fns1.xhtml#identity

4.4.1.6 Domain <domain/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols domain

The domain element represents the domain of the function to which it is applied. The domain is the set of values
over which the function is defined.

Content MathML

<apply><eq/>
 <apply><domain/><ci>f</ci></apply>
 <reals/>
</apply>

Sample Presentation

<mrow>
 <mrow><mi>domain</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced>

<mi>f</mi></mfenced></mrow>
 <mo>=</mo>
 <mi mathvariant="double-struck">R</mi>
</mrow>

domain f = ℝ
4.4.1.7 codomain <codomain/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols range

The codomain represents the codomain, or range, of the function to which is is applied. Note that the codomain
is not necessarily equal to the image of the function, it is merely required to contain the image.

Content MathML

<apply><eq/>
 <apply><codomain/><ci>f</ci></apply>
 <rationals/>
</apply>

Sample Presentation

<mrow>
 <mrow><mi>codomain</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced>

<mi>f</mi></mfenced></mrow>
 <mo>=</mo>
 <mi mathvariant="double-struck">Q</mi>
</mrow>

4 Content Markup

174

http://www.openmath.org/cd/fns1.xhtml#domain
http://www.openmath.org/cd/fns1.xhtml#range

codomain f = ℚ
4.4.1.8 Image <image/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols image

The image element represent the image of the function to which it is applied. The image of a function is the set
of values taken by the function. Every point in the image is generated by the function applied to some point of
the domain.

Content MathML

<apply><eq/>
 <apply><image/><sin/></apply>
 <interval><cn>-1</cn><cn> 1</cn></interval>
</apply>

Sample Presentation

<mrow>
 <mrow><mi>image</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced>

<mi>sin</mi></mfenced></mrow>
 <mo>=</mo>
 <mfenced open="[" close="]"><mn>-1</mn><mn>1</mn></mfenced>
</mrow>

image sin = −1, 1
4.4.1.9 Piecewise declaration <piecewise>, <piece>, <otherwise>

Class Constructor

Attributes CommonAtt, DefEncAtt

Content piece* otherwise?

OM Symbols piecewise

Syntax Table for piecewise

Class Constructor

Attributes CommonAtt, DefEncAtt

Content ContExp ContExp

OM Symbols piece

Syntax Table for piece

Class Constructor

Attributes CommonAtt, DefEncAtt

Content ContExp

OM Symbols otherwise

Syntax Table for otherwise

The piecewise, piece, and otherwise elements are used to represent "piecewise" function definitions of the
form "H x = 0 if x less than 0, H x = 1 otherwise".

The declaration is constructed using the piecewise element. This contains zero or more piece elements, and
optionally one otherwise element. Each piece element contains exactly two children. The first child defines
the value taken by the piecewise expression when the condition specified in the associated second child of the
piece is true. The degenerate case of no piece elements and no otherwise element is treated as undefined for
all values of the domain.

The otherwise element allows the specification of a value to be taken by the piecewise function when none
of the conditions (second child elements of the piece elements) is true, i.e. a default value.

It should be noted that no "order of execution" is implied by the ordering of the piece child elements within
piecewise. It is the responsibility of the author to ensure that the subsets of the function domain defined by the

4.4 Content MathML for Specific Operators and Constants

175

http://www.openmath.org/cd/fns1.xhtml#image
http://www.openmath.org/cd/piece1.xhtml#piecewise
http://www.openmath.org/cd/piece1.xhtml#piece
http://www.openmath.org/cd/piece1.xhtml#otherwise

second children of the piece elements are disjoint, or that, where they overlap, the values of the corresponding
first children of the piece elements coincide. If this is not the case, the meaning of the expression is undefined.

Here is an example:

Content MathML

<piecewise>
 <piece>
 <apply><minus/><ci>x</ci></apply>
 <apply><lt/><ci>x</ci><cn>0</cn></apply>
 </piece>
 <piece>
 <cn>0</cn>
 <apply><eq/><ci>x</ci><cn>0</cn></apply>
 </piece>
 <piece>
 <ci>x</ci>
 <apply><gt/><ci>x</ci><cn>0</cn></apply>
 </piece>
</piecewise>

Sample Presentation

<mrow>
 <mo>{</mo>
 <mtable>
 <mtr>
 <mtd><mrow><mo>−<!--MINUS SIGN--></mo><mi>x</mi></mrow></mtd>
 <mtd columnalign="left"><mtext> <!--NO-BREAK SPACE--> if <!--NO-BREAK

SPACE--></mtext></mtd>
 <mtd><mrow><mi>x</mi><mo><</mo><mn>0</mn></mrow></mtd>
 </mtr>
 <mtr>
 <mtd><mn>0</mn></mtd>
 <mtd columnalign="left"><mtext> <!--NO-BREAK SPACE--> if <!--NO-BREAK

SPACE--></mtext></mtd>
 <mtd><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></mtd>
 </mtr>
 <mtr>
 <mtd><mi>x</mi></mtd>
 <mtd columnalign="left"><mtext> <!--NO-BREAK SPACE--> if <!--NO-BREAK

SPACE--></mtext></mtd>
 <mtd><mrow><mi>x</mi><mo>></mo><mn>0</mn></mrow></mtd>
 </mtr>
 </mtable>
</mrow>

−x if x < 00 if x = 0x if x > 0
Mapping to Strict Markup

4 Content Markup

176

In Strict Content MathML, the container elements piecewise, piece and otherwise are mapped to applica-
tions of the constructor symbols of the same names in the piece1 CD. Apart from the fact that these three
elements (respectively symbols) are used together, the mapping to Strict markup is straightforward:

Content MathML

<piecewise>
 <piece>
 <cn>0</cn>
 <apply><lt/><ci>x</ci><cn>0</cn></apply>
 </piece>
 <piece>
 <cn>1</cn>
 <apply><gt/><ci>x</ci><cn>1</cn></apply>
 </piece>
 <otherwise>
 <ci>x</ci>
 </otherwise>
</piecewise>

Strict Content MathML equivalent

<apply><csymbol cd="piece1">piecewise</csymbol>
 <apply><csymbol cd="piece1">piece</csymbol>
 <cn>0</cn>
 <apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><cn>0</cn></apply>
 </apply>
 <apply><csymbol cd="piece1">piece</csymbol>
 <cn>1</cn>
 <apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><cn>1</cn></apply>
 </apply>
 <apply><csymbol cd="piece1">otherwise</csymbol>
 <ci>x</ci>
 </apply>
</apply>

4.4.2 Arithmetic, Algebra and Logic

4.4.2.1 Quotient <quotient/>

Class binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols quotient

The quotient element represents the integer division operator. When the operator is applied to integer argu-
ments a and b, the result is the "quotient of a divided by b". That is, the quotient of integers a and b, is the
integer q such that a = b × q + r, with r less than b and a × r positive. In common usage, q is called the
quotient and r is the remainder.

Content MathML

<apply><quotient/><ci>a</ci><ci>b</ci></apply>

4.4 Content MathML for Specific Operators and Constants

177

http://www.openmath.org/cd/piece1.xhtml
http://www.openmath.org/cd/integer1.xhtml#quotient

Sample Presentation

<mrow><mo>⌊<!--LEFT FLOOR--></mo><mi>a</mi><mo>/</mo><mi>b</mi>
<mo>⌋<!--RIGHT FLOOR--></mo></mrow>

a/b
4.4.2.2 Factorial <factorial/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols factorial

This element represents the unary factorial operator on non-negative integers.

The factorial of an integer n is given by n! = n × n − 1 × ⋯ × 1.

Content MathML

<apply><factorial/><ci>n</ci></apply>

Sample Presentation

<mrow><mi>n</mi><mo>!</mo></mrow>

n!
4.4.2.3 Division <divide/>

Class binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols divide

The divide element represents the division operator in a number field.

Content MathML

<apply><divide/>
 <ci>a</ci>
 <ci>b</ci>
</apply>

Sample Presentation

<mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow>

a/b

4 Content Markup

178

http://www.openmath.org/cd/integer1.xhtml#factorial
http://www.openmath.org/cd/arith1.xhtml#divide

4.4.2.4 Maximum <max/>

Class nary-minmax

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols max

The max element denotes the maximum function, which returns the largest of the arguments to which it is
applied. Its arguments may be explicitly specified in the enclosing apply element, or specified using qualifier
elements as described in Section 4.3.4.4 N-ary/Unary Operators (classes nary-minmax, nary-stats). Note that
when applied to infinite sets of arguments, no maximal argument may exist.

Content MathML

<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>

Sample Presentation

<mrow>
 <mi>max</mi>
 <mrow>
 <mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>}</mo>
 </mrow>
</mrow>

max 2, 3, 5
Content MathML

<apply><max/>
 <bvar><ci>y</ci></bvar>
 <condition>
 <apply><in/>
 <ci>y</ci>
 <interval><cn>0</cn><cn>1</cn></interval>
 </apply>
 </condition>
 <apply><power/><ci>y</ci><cn>3</cn></apply>
</apply>

Sample Presentation

<mrow>
 <mi>max</mi>
 <mrow>
 <mo>{</mo><mi>y</mi><mo>|</mo>
 <mrow>
 <msup><mi>y</mi><mn>3</mn></msup>
 <mo>∈<!--ELEMENT OF--></mo>
 <mfenced open="[" close="]"><mn>0</mn><mn>1</mn></mfenced>
 </mrow>
 <mo>}</mo>

4.4 Content MathML for Specific Operators and Constants

179

http://www.openmath.org/cd/minmax1.xhtml#max

 </mrow>
</mrow>

max y y3 ∈ 0, 1
4.4.2.5 Minimum <min/>

Class nary-minmax

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols min

The min element denotes the minimum function, which returns the smallest of the arguments to which it is
applied. Its arguments may be explicitly specified in the enclosing apply element, or specified using qualifier
elements as described in Section 4.3.4.4 N-ary/Unary Operators (classes nary-minmax, nary-stats). Note that
when applied to infinite sets of arguments, no minimal argument may exist.

Content MathML

<apply><min/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow>
 <mi>min</mi>
 <mrow><mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>}</mo></mrow>
</mrow>

min a, b
Content MathML

<apply><min/>
 <bvar><ci>x</ci></bvar>
 <condition>
 <apply><notin/><ci>x</ci><ci type="set">B</ci></apply>
 </condition>
 <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>

Sample Presentation

<mrow>
 <mi>min</mi>
 <mrow><mo>{</mo><msup><mi>x</mi><mn>2</mn></msup><mo>|</mo>
 <mrow><mi>x</mi><mo>∉<!--NOT AN ELEMENT OF--></mo><mi>B</mi></mrow>
 <mo>}</mo>
</mrow>
</mrow>

4 Content Markup

180

http://www.openmath.org/cd/minmax1.xhtml#min

min x2 x ∉ B
4.4.2.6 Subtraction <minus/>

Class unary-arith, binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols unary_minus, minus

The minus element can be used as a unary arithmetic operator (e.g. to represent −x), or as a binary arithmetic
operator (e.g. to represent x − y).

If it is used with one argument, minus corresponds to the unary_minus symbol.

Content MathML

<apply><minus/><cn>3</cn></apply>

Sample Presentation

<mrow><mo>−<!--MINUS SIGN--></mo><mn>3</mn></mrow>

−3
If it is used with two arguments, minus corresponds to the minus symbol

Content MathML

<apply><minus/><ci>x</ci><ci>y</ci></apply>

Sample Presentation

<mrow><mi>x</mi><mo>−<!--MINUS SIGN--></mo><mi>y</mi></mrow>

x − y
In both cases, the translation to Strict Content markup is direct, as described in Rewrite: element. It is merely a
matter of choosing the symbol that reflects the actual usage.

4.4.2.7 Addition <plus/>

Class nary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols plus

The plus element represents the addition operator. Its arguments are normally specified explicitly in the enclos-
ing apply element. As an n-ary commutative operator, it can be used with qualifiers to specify arguments,
however, this is discouraged, and the sum operator should be used to represent such expressions instead.

4.4 Content MathML for Specific Operators and Constants

181

http://www.openmath.org/cd/arith1.xhtml#unary_minus
http://www.openmath.org/cd/arith1.xhtml#minus
http://www.openmath.org/cd/arith1.xhtml#unary_minus
http://www.openmath.org/cd/arith1.xhtml#minus
http://www.openmath.org/cd/arith1.xhtml#plus

Content MathML

<apply><plus/><ci>x</ci><ci>y</ci><ci>z</ci></apply>

Sample Presentation

<mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi></mrow>

x + y +
4.4.2.8 Exponentiation <power/>

Class binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols power

The power element represents the exponentiation operator. The first argument is raised to the power of the
second argument.

Content MathML

<apply><power/><ci>x</ci><cn>3</cn></apply>

Sample Presentation

<msup><mi>x</mi><mn>3</mn></msup>

x3
4.4.2.9 Remainder <rem/>

Class binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols remainder

The rem element represents the modulus operator, which returns the remainder that results from dividing the first
argument by the second. That is, when applied to integer arguments a and b, it returns the unique integer r such
that a = b × q + r, with r less than b and a × r positive.

Content MathML

<apply><rem/><ci> a </ci><ci> b </ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>mod</mo><mi>b</mi></mrow>

4 Content Markup

182

http://www.openmath.org/cd/arith1.xhtml#power
http://www.openmath.org/cd/integer1.xhtml#remainder

a mod b
4.4.2.10 Multiplication <times/>

Class nary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols times

The times element represents the n-ary multiplication operator. Its arguments are normally specified explicitly
in the enclosing apply element. As an n-ary commutative operator, it can be used with qualifiers to specify
arguments by rule, however, this is discouraged, and the product operator should be used to represent such
expressions instead.

Content MathML

<apply><times/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>⁢<!--INVISIBLE TIMES--></mo><mi>b</mi></mrow>

ab
4.4.2.11 Root <root/>

Class unary-arith, binary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers degree

OM Symbols root

The root element is used to extract roots. The kind of root to be taken is specified by a "degree" element,
which should be given as the second child of the apply element enclosing the root element. Thus, square roots
correspond to the case where degree contains the value 2, cube roots correspond to 3, and so on. If no degree
is present, a default value of 2 is used.

Content MathML

<apply><root/>
 <degree><ci type="integer">n</ci></degree>
 <ci>a</ci>
</apply>

Sample Presentation

<mroot><mi>a</mi><mi>n</mi></mroot>

an

4.4 Content MathML for Specific Operators and Constants

183

http://www.openmath.org/cd/arith1.xhtml#times
http://www.openmath.org/cd/arith1.xhtml#root

Mapping to Strict Content Markup

In Strict Content markup, the root symbol is always used with two arguments, with the second indicating the
degree of the root being extracted.

Content MathML

<apply><root/><ci>x</ci></apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">root</csymbol>
 <ci>x</ci>
 <cn type="integer">2</cn>
</apply>

Content MathML

<apply><root/>
 <degree><ci type="integer">n</ci></degree>
 <ci>a</ci>
</apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">root</csymbol>
 <ci>a</ci>
 <cn type="integer">n</cn>
</apply>

4.4.2.12 Greatest common divisor <gcd/>

Class nary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols gcd

The gcd element represents the n-ary operator which returns the greatest common divisor of its arguments.
Its arguments may be explicitly specified in the enclosing apply element, or specified by rule as described
in Section 4.3.4.1 N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-
constructor).

Content MathML

<apply><gcd/><ci>a</ci><ci>b</ci><ci>c</ci></apply>

Sample Presentation

<mrow>
 <mi>gcd</mi>

4 Content Markup

184

http://www.openmath.org/cd/arith1.xhtml#root
http://www.openmath.org/cd/arith1.xhtml#gcd

 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>a</mi><mi>b</mi><mi>c</mi></mfenced>
</mrow>

gcd a, b, c
This default rendering is English-language locale specific: other locales may have different default renderings.

When the gcd element is applied to an explicit list of arguments, the translation to Strict Content markup is
direct, using the gcd symbol, as described in Rewrite: element. However, when qualifiers are used, the equivalent
Strict markup is computed via Rewrite: n-ary domainofapplication.

4.4.2.13 And <and/>

Class nary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols and

The and element represents the logical "and" function which is an n-ary function taking Boolean arguments and
returning a Boolean value. It is true if all arguments are true, and false otherwise. Its arguments may be explicitly
specified in the enclosing apply element, or specified by rule as described in Section 4.3.4.1 N-ary Operators
(classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-constructor).

Content MathML

<apply><and/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>∧<!--LOGICAL AND--></mo><mi>b</mi></mrow>

a ∧ b
Content MathML

<apply><and/>
 <bvar><ci>i</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><ci>n</ci></uplimit>
 <apply><gt/><apply><selector/><ci>a</ci><ci>i</ci></apply><cn>0</cn>

</apply>
</apply>

Strict Content MathML

<apply><csymbol cd="fns2">apply_to_list</csymbol>
 <csymbol cd="logic1">and</csymbol>
 <apply><csymbol cd="list1">map</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>i</ci></bvar>

4.4 Content MathML for Specific Operators and Constants

185

http://www.openmath.org/cd/arith1.xhtml#gcd
http://www.openmath.org/cd/logic1.xhtml#and

 <apply><csymbol cd="relation1">gt</csymbol>
 <apply><csymbol cd="linalg1">vector_selector</csymbol>
 <ci>i</ci>
 <ci>a</ci>
 </apply>
 <cn>0</cn>
 </apply>
 </bind>
 <apply><csymbol cd="interval1">integer_interval</csymbol>
 <cn type="integer">0</cn>
 <ci>n</ci>
 </apply>
 </apply>
</apply>

Sample Presentation

<mrow>
 <munderover>
 <mo>⋀<!--N-ARY LOGICAL AND--></mo>
 <mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow>
 <mi>n</mi>
 </munderover>
 <mrow>
 <mo>(</mo>
 <msub><mi>a</mi><mi>i</mi></msub>
 <mo>></mo>
 <mn>0</mn>
 <mo>)</mo>
 </mrow>
</mrow>

⋀i = 0
n ai > 0

4.4.2.14 Or <or/>

Class nary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols or

The or element represents the logical "or" function. It is true if any of the arguments are true, and false
otherwise.

Content MathML

<apply><or/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>∨<!--LOGICAL OR--></mo><mi>b</mi></mrow>

4 Content Markup

186

http://www.openmath.org/cd/logic1.xhtml#or

a ∨ b
4.4.2.15 Exclusive Or <xor/>

Class nary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols xor

The xor element represents the logical "xor" function. It is true if there are an odd number of true arguments or
false otherwise.

Content MathML

<apply><xor/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>xor</mo><mi>b</mi></mrow>

a xor b
4.4.2.16 Not <not/>

Class unary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols not

The not element represents the logical not function which takes one Boolean argument, and returns the opposite
Boolean value.

Content MathML

<apply><not/><ci>a</ci></apply>

Sample Presentation

<mrow><mo>¬<!--NOT SIGN--></mo><mi>a</mi></mrow>

¬a
4.4.2.17 Implies <implies/>

Class binary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols implies

4.4 Content MathML for Specific Operators and Constants

187

http://www.openmath.org/cd/logic1.xhtml#xor
http://www.openmath.org/cd/logic1.xhtml#not
http://www.openmath.org/cd/logic1.xhtml#implies

The implies element represents the logical implication function which takes two Boolean expressions as argu-
ments. It evaluates to false if the first argument is true and the second argument is false, otherwise it evaluates to
true.

Content MathML

<apply><implies/><ci>A</ci><ci>B</ci></apply>

Sample Presentation

<mrow><mi>A</mi><mo>⇒<!--RIGHTWARDS DOUBLE ARROW--></mo><mi>B</mi></mrow>

A B
4.4.2.18 Universal quantifier <forall/>

Class quantifier

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols forall, implies

The forall element represents the universal ("for all") quantifier which takes one or more bound variables, and
an argument which specifies the assertion being quantified. In addition, condition or other qualifiers may be
used as described in Section 4.3.4.8 Quantifiers (class quantifier) to limit the domain of the bound variables.

Content MathML

<bind><forall/>
 <bvar><ci>x</ci></bvar>
 <apply><eq/>
 <apply><minus/><ci>x</ci><ci>x</ci></apply>
 <cn>0</cn>
 </apply>
</bind>

Sample Presentation

<mrow>
 <mo>∀<!--FOR ALL--></mo>
 <mi>x</mi>
 <mo>.</mo>
 <mfenced>
 <mrow>
 <mrow><mi>x</mi><mo>−<!--MINUS SIGN--></mo><mi>x</mi></mrow>
 <mo>=</mo>
 <mn>0</mn>
 </mrow>
 </mfenced>
</mrow>

∀x . x − x = 0

4 Content Markup

188

http://www.openmath.org/cd/quant1.xhtml#forall
http://www.openmath.org/cd/logic1.xhtml#implies

Mapping to Strict Markup

When the forall element is used with a condition qualifier the strict equivalent is constructed with the
help of logical implication by the rule Rewrite: quantifier. Thus

<bind><forall/>
 <bvar><ci>p</ci></bvar>
 <bvar><ci>q</ci></bvar>
 <condition>
 <apply><and/>
 <apply><in/><ci>p</ci><rationals/></apply>
 <apply><in/><ci>q</ci><rationals/></apply>
 <apply><lt/><ci>p</ci><ci>q</ci></apply>
 </apply>
 </condition>
 <apply><lt/>
 <ci>p</ci>
 <apply><power/><ci>q</ci><cn>2</cn></apply>
 </apply>
</bind>

translates to

<bind><csymbol cd="quant1">forall</csymbol>
 <bvar><ci>p</ci></bvar>
 <bvar><ci>q</ci></bvar>
 <apply><csymbol cd="logic1">implies</csymbol>
 <apply><csymbol cd="logic1">and</csymbol>
 <apply><csymbol cd="set1">in</csymbol>
 <ci>p</ci>
 <csymbol cd="setname1">Q</csymbol>
 </apply>
 <apply><csymbol cd="set1">in</csymbol>
 <ci>q</ci>
 <csymbol cd="setname1">Q</csymbol>
 </apply>
 <apply><csymbol cd="relation1">lt</csymbol><ci>p</ci><ci>q</ci>

</apply>
 </apply>
 <apply><csymbol cd="relation1">lt</csymbol>
 <ci>p</ci>
 <apply><csymbol cd="arith1">power</csymbol>
 <ci>q</ci>
 <cn>2</cn>
 </apply>
 </apply>
 </apply>
</bind>

Sample Presentation

<mrow>
 <mo>∀<!--FOR ALL--></mo>
 <mrow>
 <mrow><mi>p</mi><mo>∈<!--ELEMENT OF--></mo><mi

4.4 Content MathML for Specific Operators and Constants

189

mathvariant="double-struck">Q</mi></mrow>
 <mo>∧<!--LOGICAL AND--></mo>
 <mrow><mi>q</mi><mo>∈<!--ELEMENT OF--></mo><mi

mathvariant="double-struck">Q</mi></mrow>
 <mo>∧<!--LOGICAL AND--></mo>
 <mrow><mo>(</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>)</mo></mrow>
 </mrow>
 <mo>.</mo>
 <mfenced>
 <mrow><mi>p</mi><mo><</mo><msup><mi>q</mi><mn>2</mn></msup></mrow>
 </mfenced>
</mrow>

∀p ∈ ℚ ∧ q ∈ ℚ ∧ p < q . p < q2
<mrow>
 <mo>∀<!--FOR ALL--></mo>
 <mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow>
 <mo>.</mo>
 <mfenced>
 <mrow>
 <mrow>
 <mo>(</mo>
 <mrow>
 <mi>p</mi><mo>∈<!--ELEMENT OF--></mo><mi

mathvariant="double-struck">Q</mi>
 </mrow>
 <mo>∧<!--LOGICAL AND--></mo>
 <mrow>
 <mi>q</mi><mo>∈<!--ELEMENT OF--></mo><mi

mathvariant="double-struck">Q</mi>
 </mrow>
 <mo>∧<!--LOGICAL AND--></mo>
 <mrow><mo>(</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>)</mo></mrow>
 <mo>)</mo>
 </mrow>
 <mo>⇒<!--RIGHTWARDS DOUBLE ARROW--></mo>
 <mrow>
 <mo>(</mo>
 <mi>p</mi>
 <mo><</mo>
 <msup><mi>q</mi><mn>2</mn></msup>
 <mo>)</mo>
 </mrow>
 </mrow>
 </mfenced>
</mrow>

∀p, q . p ∈ ℚ ∧ q ∈ ℚ ∧ p < q p < q2

4 Content Markup

190

4.4.2.19 Existential quantifier <exists/>

Class quantifier

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols exists, and

The exists element represents the existential ("there exists") quantifier which takes one or more bound varia-
bles, and an argument which specifies the assertion being quantified. In addition, condition or other qualifiers
may be used as described in Section 4.3.4.8 Quantifiers (class quantifier) to limit the domain of the bound
variables.

Content MathML

<bind><exists/>
 <bvar><ci>x</ci></bvar>
 <apply><eq/>
 <apply><ci>f</ci><ci>x</ci></apply>
 <cn>0</cn>
 </apply>
</bind>

Sample Presentation

<mrow>
 <mo>∃<!--THERE EXISTS--></mo>
 <mi>x</mi>
 <mo>.</mo>
 <mfenced>
 <mrow>
 <mrow><mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

</mfenced></mrow>
 <mo>=</mo>
 <mn>0</mn>
 </mrow>
 </mfenced>
</mrow>

∃x . f x = 0
Content MathML

<apply><exists/>
 <bvar><ci>x</ci></bvar>
 <domainofapplication>
 <integers/>
 </domainofapplication>
 <apply><eq/>
 <apply><ci>f</ci><ci>x</ci></apply>
 <cn>0</cn>
 </apply>
</apply>

4.4 Content MathML for Specific Operators and Constants

191

http://www.openmath.org/cd/quant1.xhtml#exists
http://www.openmath.org/cd/logic1.xhtml#and

Strict MathML equivalent:

<bind><csymbol cd="quant1">exists</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><csymbol cd="logic1">and</csymbol>
 <apply><csymbol cd="set1">in</csymbol>
 <ci>x</ci>
 <csymbol cd="setname1">Z</csymbol>
 </apply>
 <apply><csymbol cd="relation1">eq</csymbol>
 <apply><ci>f</ci><ci>x</ci></apply>
 <cn>0</cn>
 </apply>
 </apply>
</bind>

Sample Presentation

<mrow>
 <mo>∃<!--THERE EXISTS--></mo>
 <mi>x</mi>
 <mo>.</mo>
 <mfenced separators="">
 <mrow><mi>x</mi><mo>∈<!--ELEMENT OF--></mo><mi

mathvariant="double-struck">Z</mi></mrow>
 <mo>∧<!--LOGICAL AND--></mo>
 <mrow>
 <mrow><mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

</mfenced></mrow>
 <mo>=</mo>
 <mn>0</mn>
 </mrow>
 </mfenced>
</mrow>

∃x . x ∈ ℤ ∧ f x = 0
4.4.2.20 Absolute Value <abs/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols abs

The abs element represents the absolute value function. The argument should be numerically valued. When the
argument is a complex number, the absolute value is often referred to as the modulus.

Content MathML

<apply><abs/><ci>x</ci></apply>

Sample Presentation

4 Content Markup

192

http://www.openmath.org/cd/arith1.xhtml#abs

<mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow>

x
4.4.2.21 Complex conjugate <conjugate/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols conjugate

The conjugate element represents the function defined over the complex numbers with returns the complex
conjugate of its argument.

Content MathML

<apply><conjugate/>
 <apply><plus/>
 <ci>x</ci>
 <apply><times/><cn>ⅈ<!--DOUBLE-STRUCK ITALIC SMALL I--></cn><ci>y</ci>

</apply>
 </apply>
</apply>

Sample Presentation

<mover>
 <mrow>
 <mi>x</mi>
 <mo>+</mo>
 <mrow><mn>ⅈ<!--DOUBLE-STRUCK ITALIC SMALL I--></mn><mo>⁢<!--INVISIBLE TIMES-->

</mo><mi>y</mi></mrow>
 </mrow>
 <mo>¯<!--MACRON--></mo>
</mover>

x + ⅈy
4.4.2.22 Argument <arg/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols argument

The arg element represents the unary function which returns the angular argument of a complex number,
namely the angle which a straight line drawn from the number to zero makes with the real line (measured
anti-clockwise).

4.4 Content MathML for Specific Operators and Constants

193

http://www.openmath.org/cd/complex1.xhtml#conjugate
http://www.openmath.org/cd/complex1.xhtml#argument

Content MathML

<apply><arg/>
 <apply><plus/>
 <ci> x </ci>
 <apply><times/><imaginaryi/><ci>y</ci></apply>
 </apply>
</apply>

Sample Presentation

<mrow>
 <mi>arg</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced>
 <mrow>
 <mi>x</mi>
 <mo>+</mo>
 <mrow><mi>i</mi><mo>⁢<!--INVISIBLE TIMES--></mo><mi>y</mi></mrow>
 </mrow>
 </mfenced>
</mrow>

arg x + iy
4.4.2.23 Real part <real/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols real

The real element represents the unary operator used to construct an expression representing the "real" part of a
complex number, that is, the x component in x + iy.

Content MathML

<apply><real/>
 <apply><plus/>
 <ci>x</ci>
 <apply><times/><imaginaryi/><ci>y</ci></apply>
 </apply>
</apply>

Sample Presentation

<mrow>
 <mo>ℛ<!--SCRIPT CAPITAL R--></mo>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced>
 <mrow>
 <mi>x</mi>
 <mo>+</mo>

4 Content Markup

194

http://www.openmath.org/cd/complex1.xhtml#real

 <mrow><mi>i</mi><mo>⁢<!--INVISIBLE TIMES--></mo><mi>y</mi></mrow>
 </mrow>
 </mfenced>
</mrow>

ℛ x + iy
4.4.2.24 Imaginary part <imaginary/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols imaginary

The imaginary element represents the unary operator used to construct an expression representing the "imagi-
nary" part of a complex number, that is, the y component in x + iy.

Content MathML

<apply><imaginary/>
 <apply><plus/>
 <ci>x</ci>
 <apply><times/><imaginaryi/><ci>y</ci></apply>
 </apply>
</apply>

Sample Presentation

<mrow>
 <mo>ℑ<!--BLACK-LETTER CAPITAL I--></mo>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced>
 <mrow>
 <mi>x</mi>
 <mo>+</mo>
 <mrow><mi>i</mi><mo>⁢<!--INVISIBLE TIMES--></mo><mi>y</mi></mrow>
 </mrow>
 </mfenced>
</mrow>

ℑ x + iy
4.4.2.25 Lowest common multiple <lcm/>

Class nary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols lcm

The lcm element represents the n-ary operator used to construct an expression which represents the least com-
mon multiple of its arguments. If no argument is provided, the lcm is 1. If one argument is provided, the lcm is
that argument. The least common multiple of x and 1 is x.

4.4 Content MathML for Specific Operators and Constants

195

http://www.openmath.org/cd/complex1.xhtml#imaginary
http://www.openmath.org/cd/arith1.xhtml#lcm

Content MathML

<apply><lcm/><ci>a</ci><ci>b</ci><ci>c</ci></apply>

Sample Presentation

<mrow>
 <mi>lcm</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>a</mi><mi>b</mi><mi>c</mi></mfenced>
</mrow>

lcm a, b, c
This default rendering is English-language locale specific: other locales may have different default renderings.

4.4.2.26 Floor <floor/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols floor

The floor element represents the operation that rounds down (towards negative infinity) to the nearest integer.
This function takes one real number as an argument and returns an integer.

Content MathML

<apply><floor/><ci>a</ci></apply>

Sample Presentation

<mrow><mo>⌊<!--LEFT FLOOR--></mo><mi>a</mi><mo>⌋<!--RIGHT FLOOR--></mo>
</mrow>

a
4.4.2.27 Ceiling <ceiling/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols ceiling

The ceiling element represents the operation that rounds up (towards positive infinity) to the nearest integer.
This function takes one real number as an argument and returns an integer.

Content MathML

<apply><ceiling/><ci>a</ci></apply>

4 Content Markup

196

http://www.openmath.org/cd/rounding1.xhtml#floor
http://www.openmath.org/cd/rounding1.xhtml#ceiling

Sample Presentation

<mrow><mo>⌈<!--LEFT CEILING--></mo><mi>a</mi><mo>⌉<!--RIGHT CEILING--></mo>
</mrow>

a
4.4.3 Relations

4.4.3.1 Equals <eq/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols eq

The eq elements represents the equality relation. While equality is a binary relation, eq may be used with more
than two arguments, denoting a chain of equalities, as described in Section 4.3.4.3 N-ary Relations (classes
nary-reln, nary-set-reln).

Content MathML

<apply><eq/>
 <cn type="rational">2<sep/>4</cn>
 <cn type="rational">1<sep/>2</cn>
</apply>

Sample Presentation

<mrow>
 <mrow><mn>2</mn><mo>/</mo><mn>4</mn></mrow>
 <mo>=</mo>
 <mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow>
</mrow>

2/4 = 1/2
4.4.3.2 Not Equals <neq/>

Class binary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols neq

The neq element represents the binary inequality relation, i.e. the relation "not equal to" which returns true
unless the two arguments are equal.

Content MathML

<apply><neq/><cn>3</cn><cn>4</cn></apply>

4.4 Content MathML for Specific Operators and Constants

197

http://www.openmath.org/cd/relation1.xhtml#eq
http://www.openmath.org/cd/relation1.xhtml#neq

Sample Presentation

<mrow><mn>3</mn><mo>≠<!--NOT EQUAL TO--></mo><mn>4</mn></mrow>

3 ≠ 4
4.4.3.3 Greater than <gt/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols gt

The gt element represents the "greater than" function which returns true if the first argument is greater than
the second, and returns false otherwise. While this is a binary relation, gt may be used with more than two
arguments, denoting a chain of inequalities, as described in Section 4.3.4.3 N-ary Relations (classes nary-reln,
nary-set-reln).

Content MathML

<apply><gt/><cn>3</cn><cn>2</cn></apply>

Sample Presentation

<mrow><mn>3</mn><mo>></mo><mn>2</mn></mrow>

3 > 2
4.4.3.4 Less Than <lt/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols lt

The lt element represents the "less than" function which returns true if the first argument is less than the second,
and returns false otherwise. While this is a binary relation, lt may be used with more than two arguments,
denoting a chain of inequalities, as described in Section 4.3.4.3 N-ary Relations (classes nary-reln, nary-set-reln).

Content MathML

<apply><lt/><cn>2</cn><cn>3</cn><cn>4</cn></apply>

Sample Presentation

<mrow><mn>2</mn><mo><</mo><mn>3</mn><mo><</mo><mn>4</mn></mrow>

2 < 3 < 4

4 Content Markup

198

http://www.openmath.org/cd/relation1.xhtml#gt
http://www.openmath.org/cd/relation1.xhtml#lt

4.4.3.5 Greater Than or Equal <geq/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols geq

The geq element represents the "greater than or equal to" function which returns true if the first argument is
greater than or equal to the second, and returns false otherwise. While this is a binary relation, geq may be used
with more than two arguments, denoting a chain of inequalities, as described in Section 4.3.4.3 N-ary Relations
(classes nary-reln, nary-set-reln).

Content MathML

<apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>

Strict Content MathML

<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">geq</csymbol>
 <apply><csymbol cd="list1">list</csymbol>
 <cn>4</cn><cn>3</cn><cn>3</cn>
 </apply>
</apply>

Sample Presentation

<mrow><mn>4</mn><mo>≥<!--GREATER-THAN OR EQUAL TO--></mo><mn>3</mn>
<mo>≥<!--GREATER-THAN OR EQUAL TO--></mo><mn>3</mn></mrow>

4 ≥ 3 ≥ 3
4.4.3.6 Less Than or Equal <leq/>

Class nary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols leq

The leq element represents the "less than or equal to" function which returns true if the first argument is less
than or equal to the second, and returns false otherwise. While this is a binary relation, leq may be used with
more than two arguments, denoting a chain of inequalities, as described in Section 4.3.4.3 N-ary Relations
(classes nary-reln, nary-set-reln).

Content MathML

<apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>

Sample Presentation

4.4 Content MathML for Specific Operators and Constants

199

http://www.openmath.org/cd/relation1.xhtml#geq
http://www.openmath.org/cd/relation1.xhtml#leq

<mrow><mn>3</mn><mo>≤<!--LESS-THAN OR EQUAL TO--></mo><mn>3</mn>
<mo>≤<!--LESS-THAN OR EQUAL TO--></mo><mn>4</mn></mrow>

3 ≤ 3 ≤ 4
4.4.3.7 Equivalent <equivalent/>

Class binary-logical

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols equivalent

The equivalent element represents the relation that asserts two Boolean expressions are logically equivalent,
that is have the same Boolean value for any inputs.

Content MathML

<apply><equivalent/>
 <ci>a</ci>
 <apply><not/><apply><not/><ci>a</ci></apply></apply>
</apply>

Sample Presentation

<mrow>
 <mi>a</mi>
 <mo>≡<!--IDENTICAL TO--></mo>
 <mrow><mo>¬<!--NOT SIGN--></mo><mrow><mo>¬<!--NOT SIGN--></mo><mi>a</mi>

</mrow></mrow>
</mrow>

a ≡ ¬¬a
4.4.3.8 Approximately <approx/>

Class binary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols approx

The approx element represent the relation that asserts the approximate equality of its arguments.

Content MathML

<apply><approx/>
 <pi/>
 <cn type="rational">22<sep/>7</cn>
</apply>

Sample Presentation

4 Content Markup

200

http://www.openmath.org/cd/logic1.xhtml#equivalent
http://www.openmath.org/cd/relation1.xhtml#approx

<mrow>
 <mi>π<!--GREEK SMALL LETTER PI--></mi>
 <mo>≃<!--ASYMPTOTICALLY EQUAL TO--></mo>
 <mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>
</mrow>

π ≃ 22/7
4.4.3.9 Factor Of <factorof/>

Class binary-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols factorof

The factorof element is used to indicate the mathematical relationship that the first argument "is a factor of"
the second. This relationship is true if and only if b mod a = 0.

Content MathML

<apply><factorof/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>|</mo><mi>b</mi></mrow>

a b
4.4.4 Calculus and Vector Calculus

4.4.4.1 Integral <int/>

Class int

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols int defint

The int element is the operator element for a definite or indefinite integral over a function or a definite over an
expression with a bound variable.

Content MathML

<apply><eq/>
 <apply><int/><sin/></apply>
 <cos/>
</apply>

Sample Presentation

4.4 Content MathML for Specific Operators and Constants

201

http://www.openmath.org/cd/integer1.xhtml#factorof
http://www.openmath.org/cd/calculus1.xhtml#int
http://www.openmath.org/cd/calculus1.xhtml#defint

<mrow><mrow><mi>∫<!--INTEGRAL--></mi><mi>sin</mi></mrow><mo>=</mo>
<mi>cos</mi></mrow>

sin = cos
Content MathML

<apply><int/>
 <interval><ci>a</ci><ci>b</ci></interval>
 <cos/>
</apply>

Sample Presentation

<mrow>
 <msubsup><mi>∫<!--INTEGRAL--></mi><mi>a</mi><mi>b</mi></msubsup>

<mi>cos</mi>
</mrow>

a
bcos

The int element can also be used with bound variables serving as the integration variables.

Content MathML

Here, definite integrals are indicated by providing qualifier elements specifying a domain of integration (here
a lowlimit/uplimit pair). This is perhaps the most "standard" representation of this integral:

<apply><int/>
 <bvar><ci>x</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><cn>1</cn></uplimit>
 <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>

Sample Presentation

<mrow>
 <msubsup><mi>∫<!--INTEGRAL--></mi><mn>0</mn><mn>1</mn></msubsup>
 <msup><mi>x</mi><mn>2</mn></msup>
 <mi>d</mi>
 <mi>x</mi>
</mrow>

0
1x2dx

4 Content Markup

202

Mapping to Strict Markup

As an indefinite integral applied to a function, the int element corresponds to the int symbol from the calculus1
content dictionary. As a definite integral applied to a function, the int element corresponds to the defint symbol
from the calculus1 content dictionary.

When no bound variables are present, the translation of an indefinite integral to Strict Content Markup is straight
forward. When bound variables are present, the following rule should be used.

Rewrite: int

Translate an indefinite integral, where <ci>expression-in-x</ci> is an arbitrary expression involving the bound
variable(s) <ci>x</ci>

<apply><int/>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
</apply>

to the expression

<apply>
 <apply><csymbol cd="calculus1">int</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>
 </apply>

 <ci>x</ci>
</apply>

Note that as x is not bound in the original indefinite integral, the integrated function is applied to the variable x making it an explicit free variable in Strict Content Markup expression, even though it is bound in the
subterm used as an argument to int.

For instance, the expression

<apply><int/>
 <bvar><ci>x</ci></bvar>
 <apply><cos/><ci>x</ci></apply>
</apply>

has the Strict Content MathML equivalent

<apply>
 <apply><csymbol cd="calculus1">int</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><cos/><ci>x</ci></apply>
 </bind>
 </apply>

4.4 Content MathML for Specific Operators and Constants

203

http://www.openmath.org/cd/calculus1.xhtml#int
http://www.openmath.org/cd/calculus1.xhtml
http://www.openmath.org/cd/calculus1.xhtml#defint
http://www.openmath.org/cd/calculus1.xhtml
http://www.openmath.org/cd/calculus1.xhtml#int

 <ci>x</ci>
</apply>

For a definite integral without bound variables, the translation is also straightforward.

For instance, the integral of a differential form f over an arbitrary domain C represented as

<apply><int/>
 <domainofapplication><ci>C</ci></domainofapplication>
 <ci>f</ci>
</apply>

is equivalent to the Strict Content MathML:

<apply><csymbol cd="calculus1">defint</csymbol><ci>C</ci><ci>f</ci></apply>

Note, however, the additional remarks on the translations of other kinds of qualifiers that may be used to
specify a domain of integration in the rules for definite integrals following.

When bound variables are present, the situation is more complicated in general, and the following rules are used.

Rewrite: defint

Translate a definite integral, where <ci>expression-in-x</ci> is an arbitrary expression involving the bound
variable(s) <ci>x</ci>

<apply><int/>

 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>D</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>

to the expression

<apply><csymbol cd="calculus1">defint</csymbol>

 <ci>D</ci>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>
</apply>

But the definite integral with an lowlimit/uplimit pair carries the strong intuition that the range of integration
is oriented, and thus swapping lower and upper limits will change the sign of the result. To accommodate this,
use the following special translation rule:

Rewrite: defint limits

<apply><int/>

 <bvar><ci>x</ci></bvar>

4 Content Markup

204

 <lowlimit><ci>a</ci></lowlimit>
 <uplimit><ci>b</ci></uplimit>
 <ci>expression-in-x</ci>
</apply>

where <ci>expression-in-x</ci> is an expression in the variable x is translated to to the expression:

<apply><csymbol cd="calculus1">defint</csymbol>
 <apply><csymbol cd="interval1">oriented_interval</csymbol>

 <ci>a</ci> <ci>b</ci>
 </apply>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>
</apply>

The oriented_interval symbol is also used when translating the interval qualifier, when it is used to specify
the domain of integration. Integration is assumed to proceed from the left endpoint to the right endpoint.

The case for multiple integrands is treated analogously.

Note that use of the condition qualifier also requires special treatment. In particular, it extends to multivari-
ate domains by using extra bound variables and a domain corresponding to a cartesian product as in:

<bind><int/>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <condition>
 <apply><and/>
 <apply><leq/><cn>0</cn><ci>x</ci></apply>
 <apply><leq/><ci>x</ci><cn>1</cn></apply>
 <apply><leq/><cn>0</cn><ci>y</ci></apply>
 <apply><leq/><ci>y</ci><cn>1</cn></apply>
 </apply>
 </condition>
 <apply><times/>
 <apply><power/><ci>x</ci><cn>2</cn></apply>
 <apply><power/><ci>y</ci><cn>3</cn></apply>
 </apply>
</bind>

Strict Content MathML equivalent

<apply><csymbol cd="calculus1">defint</csymbol>
 <apply><csymbol cd="set1">suchthat</csymbol>
 <apply><csymbol cd="set1">cartesianproduct</csymbol>
 <csymbol cd="setname1">R</csymbol>
 <csymbol cd="setname1">R</csymbol>
 </apply>
 <apply><csymbol cd="logic1">and</csymbol>
 <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply>
 <apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply>

4.4 Content MathML for Specific Operators and Constants

205

http://www.openmath.org/cd/interval1.xhtml#oriented_interval

 <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply>
 <apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply>
 </apply>
 <bind><csymbol cd="fns11">lambda</csymbol>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <apply><csymbol cd="arith1">times</csymbol>
 <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply>
 <apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply>
 </apply>
 </bind>
 </apply>
</apply>

4.4.4.2 Differentiation <diff/>

Class Differential-Operator

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols diff

The diff element is the differentiation operator element for functions or expressions of a single variable. It
may be applied directly to an actual function thereby denoting a function which is the derivative of the original
function, or it can be applied to an expression involving a single variable.

Content MathML

<apply><diff/><ci>f</ci></apply>

Sample Presentation

<msup><mi>f</mi><mo>′<!--PRIME--></mo></msup>

f′
Content MathML

<apply><eq/>
 <apply><diff/>
 <bvar><ci>x</ci></bvar>
 <apply><sin/><ci>x</ci></apply>
 </apply>
 <apply><cos/><ci>x</ci></apply>
</apply>

Sample Presentation

<mrow>
 <mfrac>
 <mrow><mi>d</mi><mrow><mi>sin</mi><mo>⁡<!--FUNCTION APPLICATION--></mo>

<mi>x</mi></mrow></mrow>
 <mrow><mi>d</mi><mi>x</mi></mrow>
 </mfrac>

4 Content Markup

206

http://www.openmath.org/cd/calculus1.xhtml#diff

 <mo>=</mo>
 <mrow><mi>cos</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>x</mi></mrow>
</mrow>

dsin xdx = cos x
The bvar element may also contain a degree element, which specifies the order of the derivative to be taken.

Content MathML

<apply><diff/>
 <bvar><ci>x</ci><degree><cn>2</cn></degree></bvar>
 <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>

Sample Presentation

<mfrac>
 <mrow>
 <msup><mi>d</mi><mn>2</mn></msup>
 <msup><mi>x</mi><mn>4</mn></msup>
 </mrow>
 <mrow><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow>
</mfrac>

d2x4dx2
Mapping to Strict Markup

For the translation to strict Markup it is crucial to realize that in the expression case, the variable is actually not
bound by the differentiation operator.

Rewrite: diff

Translate an expression

<apply><diff/>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
</apply>

where <ci>expression-in-x</ci> is an expression in the variable x to the expression

<apply>
 <apply><csymbol cd="calculus1">diff</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>E</ci>
 </bind>

4.4 Content MathML for Specific Operators and Constants

207

 </apply>

 <ci>x</ci>
</apply>

Note that the differentiated function is applied to the variable x making its status as a free variable explicit in
strict markup. Thus the strict equivalent of

<apply><diff/>
 <bvar><ci>x</ci></bvar>
 <apply><sin/><ci>x</ci></apply>
</apply>

is

<apply>
 <apply><csymbol cd="calculus1">diff</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
 </bind>
 </apply>
 <ci>x</ci>
</apply>

If the bvar element contains a degree element, use the nthdiff symbol.

Rewrite: nthdiff

<apply><diff/>

 <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
 <ci>expression-in-x</ci>
</apply>

where <ci>expression-in-x</ci> is an is an expression in the variable x is translated to to the expression:

<apply>
 <apply><csymbol cd="calculus1">nthdiff</csymbol>

 <ci>n</ci>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>
 </apply>

 <ci>x</ci>
</apply>

For example

<apply><diff/>
 <bvar><degree><cn>2</cn></degree><ci>x</ci></bvar>
 <apply><sin/><ci>x</ci></apply>
</apply>

4 Content Markup

208

Strict Content MathML equivalent

<apply>
 <apply><csymbol cd="calculus1">nthdiff</csymbol>
 <cn>2</cn>
 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar>
 <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
 </bind>
 </apply>
 <ci>x</ci>
</apply>

4.4.4.3 Partial Differentiation <partialdiff/>

Class partialdiff

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols partialdiff partialdiffdegree

The partialdiff element is the partial differentiation operator element for functions or expressions in several
variables.

For the case of partial differentiation of a function, the containing partialdiff takes two arguments: firstly
a list of indices indicating by position which function arguments are involved in constructing the partial deriva-
tives, and secondly the actual function to be partially differentiated. The indices may be repeated.

Content MathML

<apply><partialdiff/>
 <list><cn>1</cn><cn>1</cn><cn>3</cn></list>
 <ci type="function">f</ci>
</apply>

Sample Presentation

<mrow>
 <msub>
 <mi>D</mi>
 <mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn></mrow>
 </msub>
 <mi>f</mi>
</mrow>

D1, 1, 3f
Content MathML

<apply><partialdiff/>
 <list><cn>1</cn><cn>1</cn><cn>3</cn></list>
 <lambda>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>

4.4 Content MathML for Specific Operators and Constants

209

http://www.openmath.org/cd/calculus1.xhtml#partialdiff
http://www.openmath.org/cd/calculus1.xhtml#partialdiffdegree

 <bvar><ci>z</ci></bvar>
 <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply>
 </lambda>
</apply>

Sample Presentation

<mfrac>
 <mrow>
 <msup><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><mn>3</mn></msup>
 <mrow>
 <mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

<mi>y</mi><mi>z</mi></mfenced>
 </mrow>
 </mrow>
 <mrow>
 <mrow><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><msup><mi>x</mi><mn>2</mn>

</msup></mrow>
 <mrow><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><mi>z</mi></mrow>
 </mrow>
</mfrac>

∂3f x, y,∂x2∂
In the case of algebraic expressions, the bound variables are given by bvar elements, which are children of the
containing apply element. The bvar elements may also contain degree element, which specify the order of the
partial derivative to be taken in that variable.

Content MathML

<apply><partialdiff/>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
</apply>

Sample Presentation

<mfrac>
 <mrow>
 <msup><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><mn>2</mn></msup>
 <mrow>
 <mi>f</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>x</mi><mi>y</mi></mfenced>
 </mrow>
 </mrow>
 <mrow>
 <mrow><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><mi>x</mi></mrow>
 <mrow><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><mi>y</mi></mrow>
 </mrow>
</mfrac>

4 Content Markup

210

∂2f x, y∂x∂y
Where a total degree of differentiation must be specified, this is indicated by use of a degree element at the top
level, i.e. without any associated bvar, as a child of the containing apply element.

Content MathML

<apply><partialdiff/>
 <bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>
 <bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>
 <degree><ci>k</ci></degree>
 <apply><ci type="function">f</ci>
 <ci>x</ci>
 <ci>y</ci>
 </apply>
</apply>

Sample Presentation

<mfrac>
 <mrow>
 <msup><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><mi>k</mi></msup>
 <mrow>
 <mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

<mi>y</mi></mfenced>
 </mrow>
 </mrow>
 <mrow>
 <mrow><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><msup><mi>x</mi><mi>m</mi>

</msup></mrow>
 <mrow><mo>∂<!--PARTIAL DIFFERENTIAL--></mo><msup><mi>y</mi><mi>n</mi>

</msup></mrow>
 </mrow>
</mfrac>

∂kf x, y∂xm∂yn
Mapping to Strict Markup

When applied to a function, the partialdiff element corresponds to the partialdiff symbol from the calculus1
content dictionary. No special rules are necessary as the two arguments of partialdiff translate directly to the
two arguments of partialdiff.

Rewrite: partialdiffdegree

If partialdiff is used with an expression and bvar qualifiers it is rewritten to Strict Content MathML
using the partialdiffdegree symbol.

4.4 Content MathML for Specific Operators and Constants

211

http://www.openmath.org/cd/calculus1.xhtml#partialdiff
http://www.openmath.org/cd/calculus1.xhtml
http://www.openmath.org/cd/calculus1.xhtml#partialdiff
http://www.openmath.org/cd/calculus1.xhtml#partialdiffdegree

<apply><partialdiff/>

 <bvar><ci>x1</ci><degree><ci>n1</ci></degree></bvar>
 <bvar><ci>xk</ci><degree><ci>nk</ci></degree></bvar>
 <degree><ci>total-n1-nk</ci></degree>
 <ci>expression-in-x1-xk</ci>
</apply>

<ci>expression-in-x1-xk</ci> is an arbitrary expression involving the bound variables.

<apply>
 <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
 <apply><csymbol cd="list1">list</csymbol>

 <ci>n1</ci> <ci>nk</ci>
 </apply>

 <ci>total-n1-nk</ci>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x1</ci></bvar>
 <bvar><ci>xk</ci></bvar>
 <ci>expression-in-x1-xk</ci>
 </bind>
 </apply>

 <ci>x1</ci>
 <ci>xk</ci>
</apply>

If any of the bound variables do not use a degree qualifier, <cn>1</cn> should be used in place of the
degree. If the original expression did not use the total degree qualifier then the second argument to partialdiff-
degree should be the sum of the degrees, for example

<apply><csymbol cd="arith1">plus</csymbol>

 <ci>n1</ci> <ci>nk</ci>
</apply>

With this rule, the expression

<apply><partialdiff/>
 <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
 <bvar><ci>y</ci><degree><ci>m</ci></degree></bvar>
 <apply><sin/>
 <apply><times/><ci>x</ci><ci>y</ci></apply>
 </apply>
</apply>

is translated into

<apply>
 <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
 <apply><csymbol cd="list1">list</csymbol>
 <ci>n</ci><ci>m</ci>
 </apply>
 <apply><csymbol cd="arith1">plus</csymbol>
 <ci>n</ci><ci>m</ci>
 </apply>

4 Content Markup

212

http://www.openmath.org/cd/calculus1.xhtml#partialdiffdegree

 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <apply><csymbol cd="transc1">sin</csymbol>
 <apply><csymbol cd="arith1">times</csymbol>
 <ci>x</ci><ci>y</ci>
 </apply>
 </apply>
 </bind>
 <ci>x</ci>
 <ci>y</ci>
 </apply>
</apply>

4.4.4.4 Divergence <divergence/>

Class unary-veccalc

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols divergence

The divergence element is the vector calculus divergence operator, often called div. It represents the diver-
gence function which takes one argument which should be a vector of scalar-valued functions, intended to
represent a vector-valued function, and returns the scalar-valued function giving the divergence of the argument.

Content MathML

<apply><divergence/><ci>a</ci></apply>

Sample Presentation

<mrow><mi>div</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>a</mi>
</mfenced></mrow>

div a
Content MathML

<apply><divergence/>
 <ci type="vector">E</ci>
</apply>

Sample Presentation

<mrow><mi>div</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>E</mi>
</mfenced></mrow>

div E
<mrow><mo>∇<!--NABLA--></mo><mo>⋅<!--DOT OPERATOR--></mo><mi>E</mi>

</mrow>

4.4 Content MathML for Specific Operators and Constants

213

http://www.openmath.org/cd/veccalc1.xhtml#divergence

∇ ⋅ E
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordi-
nate names, in which case the coordinate names must be provided as bound variables.

Content MathML

<apply><divergence/>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <bvar><ci>z</ci></bvar>
 <vector>
 <apply><plus/><ci>x</ci><ci>y</ci></apply>
 <apply><plus/><ci>x</ci><ci>z</ci></apply>
 <apply><plus/><ci>z</ci><ci>y</ci></apply>
 </vector>
</apply>

Sample Presentation

<mrow>
 <mi>div</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mo>(</mo>
 <mtable>
 <mtr><mtd>
 <mi>x</mi>
 <mo>↦<!--RIGHTWARDS ARROW FROM BAR--></mo>
 <mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>
 </mtd></mtr>
 <mtr><mtd>
 <mi>y</mi>
 <mo>↦<!--RIGHTWARDS ARROW FROM BAR--></mo>
 <mrow><mi>x</mi><mo>+</mo><mi>z</mi></mrow>
 </mtd></mtr>
 <mtr><mtd>
 <mi>z</mi>
 <mo>↦<!--RIGHTWARDS ARROW FROM BAR--></mo>
 <mrow><mi>z</mi><mo>+</mo><mi>y</mi></mrow>
 </mtd></mtr>
 </mtable>
 <mo>)</mo>
</mrow>

div x x + yy x ++ y

4 Content Markup

214

4.4.4.5 Gradient <grad/>

Class unary-veccalc

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols grad

The grad element is the vector calculus gradient operator, often called grad. It is used to represent the grad
function, which takes one argument which should be a scalar-valued function and returns a vector of functions.

Content MathML

<apply><grad/><ci type="function">f</ci></apply>

Sample Presentation

<mrow><mi>grad</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>f</mi>
</mfenced></mrow>

grad f
<mrow><mo>∇<!--NABLA--></mo><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced>

<mi>f</mi></mfenced></mrow>

∇ f
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordi-
nate names, in which case the coordinate names must be provided as bound variables.

Content MathML

<apply><grad/>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <bvar><ci>z</ci></bvar>
 <apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply>
</apply>

Sample Presentation

<mrow>
 <mi>grad</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mrow>
 <mo>(</mo>
 <mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced>
 <mo>↦<!--RIGHTWARDS ARROW FROM BAR--></mo>
 <mrow>
 <mi>x</mi><mo>⁢<!--INVISIBLE TIMES--></mo><mi>y</mi><mo>⁢<!--INVISIBLE

TIMES--></mo><mi>z</mi>
 </mrow>
 <mo>)</mo>

4.4 Content MathML for Specific Operators and Constants

215

http://www.openmath.org/cd/veccalc1.xhtml#grad

 </mrow>
</mrow>

grad x, y, xy
4.4.4.6 Curl <curl/>

Class unary-veccalc

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols curl

The curl element is used to represent the curl function of vector calculus. It takes one argument which should
be a vector of scalar-valued functions, intended to represent a vector-valued function, and returns a vector of
functions.

Content MathML

<apply><curl/><ci>a</ci></apply>

Sample Presentation

<mrow><mi>curl</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>a</mi>
</mfenced></mrow>

curl a
<mrow><mo>∇<!--NABLA--></mo><mo>×<!--MULTIPLICATION SIGN--></mo><mi>a</mi>

</mrow>

∇ × a
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordi-
nate names, in which case the coordinate names must be provided as bound variables.

4.4.4.7 Laplacian <laplacian/>

Class unary-veccalc

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols Laplacian

The laplacian element represents the Laplacian operator of vector calculus. The Laplacian takes a single
argument which is a vector of scalar-valued functions representing a vector-valued function, and returns a vector
of functions.

Content MathML

<apply><laplacian/><ci type="vector">E</ci></apply>

Sample Presentation

4 Content Markup

216

http://www.openmath.org/cd/veccalc1.xhtml#curl
http://www.openmath.org/cd/veccalc1.xhtml#Laplacian

<mrow>
 <msup><mo>∇<!--NABLA--></mo><mn>2</mn></msup>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>E</mi></mfenced>
</mrow>

∇2 E
The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordi-
nate names, in which case the coordinate names must be provided as bound variables.

Content MathML

<apply><laplacian/>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <bvar><ci>z</ci></bvar>
 <apply><ci>f</ci><ci>x</ci><ci>y</ci></apply>
</apply>

Sample Presentation

<mrow>
 <msup><mo>∇<!--NABLA--></mo><mn>2</mn></msup>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mrow>
 <mo>(</mo>
 <mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced>
 <mo>↦<!--RIGHTWARDS ARROW FROM BAR--></mo>
 <mrow>
 <mi>f</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>x</mi><mi>y</mi></mfenced>
 </mrow>
 <mo>)</mo>
 </mrow>
</mrow>

∇2 x, y, f x, y
4.4.5 Theory of Sets

4.4.5.1 Set <set>

Class nary-setlist-constructor

Attributes CommonAtt, DefEncAtt, type?

type Attribute Values "set" | "multiset" | text

Content ContExp*

Qualifiers BvarQ, DomainQ

OM Symbols set, multiset

4.4 Content MathML for Specific Operators and Constants

217

http://www.openmath.org/cd/set1.xhtml#set
http://www.openmath.org/cd/multiset1.xhtml#multiset

The set represents a function which constructs mathematical sets from its arguments. It is an n-ary function.
The members of the set to be constructed may be given explicitly as child elements of the constructor, or
specified by rule as described in Section 4.3.1.1 Container Markup for Constructor Symbols. There is no implied
ordering to the elements of a set.

Content MathML

<set>
 <ci>a</ci><ci>b</ci><ci>c</ci>
</set>

Sample Presentation

<mrow>
 <mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>}</mo>
</mrow>

a, b, c
In general, a set can be constructed by providing a function and a domain of application. The elements of the set
correspond to the values obtained by evaluating the function at the points of the domain.

Content MathML

<set>
 <bvar><ci>x</ci></bvar>
 <condition>
 <apply><lt/><ci>x</ci><cn>5</cn></apply>
 </condition>
 <ci>x</ci>
</set>

Sample Presentation

<mrow>
 <mo>{</mo>
 <mi>x</mi>
 <mo>|</mo>
 <mrow><mi>x</mi><mo><</mo><mn>5</mn></mrow>
 <mo>}</mo>
</mrow>

x x < 5
Content MathML

<set>
 <bvar><ci type="set">S</ci></bvar>
 <condition>
 <apply><in/><ci>S</ci><ci type="list">T</ci></apply>
 </condition>

4 Content Markup

218

 <ci>S</ci>
</set>

Sample Presentation

<mrow>
 <mo>{</mo>
 <mi>S</mi>
 <mo>|</mo>
 <mrow><mi>S</mi><mo>∈<!--ELEMENT OF--></mo><mi>T</mi></mrow>
 <mo>}</mo>
</mrow>

S S ∈ T
Content MathML

<set>
 <bvar><ci> x </ci></bvar>
 <condition>
 <apply><and/>
 <apply><lt/><ci>x</ci><cn>5</cn></apply>
 <apply><in/><ci>x</ci><naturalnumbers/></apply>
 </apply>
 </condition>
 <ci>x</ci>
</set>

Sample Presentation

<mrow>
 <mo>{</mo>
 <mi>x</mi>
 <mo>|</mo>
 <mrow>
 <mrow><mo>(</mo><mi>x</mi><mo><</mo><mn>5</mn><mo>)</mo></mrow>
 <mo>∧<!--LOGICAL AND--></mo>
 <mrow>
 <mi>x</mi><mo>∈<!--ELEMENT OF--></mo><mi

mathvariant="double-struck">N</mi>
 </mrow>
 </mrow>
 <mo>}</mo>
</mrow>

x x < 5 ∧ x ∈ ℕ

4.4 Content MathML for Specific Operators and Constants

219

4.4.5.2 List <list>

Class nary-setlist-constructor

Attributes CommonAtt, DefEncAtt, order

order Attribute Values "numeric" | "lexicographic"

Content ContExp*

Qualifiers BvarQ, DomainQ

OM Symbols interval_cc, list

The list elements represents the n-ary function which constructs a list from its arguments. Lists differ from sets
in that there is an explicit order to the elements.

The list entries and order may be given explicitly.

Content MathML

<list>
 <ci>a</ci><ci>b</ci><ci>c</ci>
</list>

Sample Presentation

<mrow>
 <mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo>
</mrow>

a, b, c
In general a list can be constructed by providing a function and a domain of application. The elements of the list
correspond to the values obtained by evaluating the function at the points of the domain. When this method is
used, the ordering of the list elements may not be clear, so the kind of ordering may be specified by the order
attribute. Two orders are supported: lexicographic and numeric.

Content MathML

<list order="numeric">
 <bvar><ci>x</ci></bvar>
 <condition>
 <apply><lt/><ci>x</ci><cn>5</cn></apply>
 </condition>
</list>

Sample Presentation

<mrow>
 <mo>(</mo>
 <mi>x</mi>
 <mo>|</mo>
 <mrow><mi>x</mi><mo><</mo><mn>5</mn></mrow>
 <mo>)</mo>
</mrow>

4 Content Markup

220

http://www.openmath.org/cd/interval1.xhtml#interval_cc
http://www.openmath.org/cd/list1.xhtml#list

x x < 5
4.4.5.3 Union <union/>

Class nary-set

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols union

The union element is used to denote the n-ary union of sets. It takes sets as arguments, and denotes the set that
contains all the elements that occur in any of them.

Arguments may be explicitly specified.

Content MathML

<apply><union/><ci>A</ci><ci>B</ci></apply>

Sample Presentation

<mrow><mi>A</mi><mo>∪<!--UNION--></mo><mi>B</mi></mrow>

A ∪ B
Arguments may also be specified using qualifier elements as described in Section 4.3.4.1 N-ary Operators
(classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-constructor). operator element can
be used as a binding operator to construct the union over a collection of sets.

Content MathML

<apply><union/>
 <bvar><ci type="set">S</ci></bvar>
 <domainofapplication>
 <ci type="list">L</ci>
 </domainofapplication>
 <ci type="set"> S</ci>
</apply>

Sample Presentation

<mrow><munder><mo>⋃<!--N-ARY UNION--></mo><mi>L</mi></munder><mi>S</mi>
</mrow>⋃L S

4.4 Content MathML for Specific Operators and Constants

221

http://www.openmath.org/cd/set1.xhtml#union

4.4.5.4 Intersect <intersect/>

Class nary-set

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols intersect

The intersect element is used to denote the n-ary intersection of sets. It takes sets as arguments, and denotes
the set that contains all the elements that occur in all of them. Its arguments may be explicitly specified in the
enclosing apply element, or specified using qualifier elements as described in Section 4.3.4.1 N-ary Operators
(classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-constructor).

Content MathML

<apply><intersect/>
 <ci type="set"> A </ci>
 <ci type="set"> B </ci>
</apply>

Sample Presentation

<mrow><mi>A</mi><mo>∩<!--INTERSECTION--></mo><mi>B</mi></mrow>

A ∩ B
Content MathML

<apply><intersect/>
 <bvar><ci type="set">S</ci></bvar>
 <domainofapplication><ci type="list">L</ci></domainofapplication>
 <ci type="set"> S </ci>
</apply>

Sample Presentation

<mrow><munder><mo>⋂<!--N-ARY INTERSECTION--></mo><mi>L</mi></munder>
<mi>S</mi></mrow>⋂L S

4.4.5.5 Set inclusion <in/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols in

The in element represents the set inclusion relation. It has two arguments, an element and a set. It is used to
denote that the element is in the given set.

4 Content Markup

222

http://www.openmath.org/cd/set1.xhtml#intersect
http://www.openmath.org/cd/set1.xhtml#in

Content MathML

<apply><in/><ci>a</ci><ci type="set">A</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>∈<!--ELEMENT OF--></mo><mi>A</mi></mrow>

a ∈ A
When translating to Strict Content Markup, if the type has value "multiset", then the in symbol from multiset1
should be used instead.

4.4.5.6 Set exclusion <notin/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols notin

The notin represents the negated set inclusion relation. It has two arguments, an element and a set. It is used to
denote that the element is not in the given set.

Content MathML

<apply><notin/><ci>a</ci><ci type="set">A</ci></apply>

Sample Presentation

<mrow><mi>a</mi><mo>∉<!--NOT AN ELEMENT OF--></mo><mi>A</mi></mrow>

a ∉ A
When translating to Strict Content Markup, if the type has value "multiset", then the in symbol from multiset1
should be used instead.

4.4.5.7 Subset <subset/>

Class nary-set-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols subset

The subset element represents the subset relation. It is used to denote that the first argument is a subset of the
second. As described in Section 4.3.4.3 N-ary Relations (classes nary-reln, nary-set-reln), it may also be used as
an n-ary operator to express that each argument is a subset of its predecessor.

Content MathML

<apply><subset/>
 <ci type="set">A</ci>

4.4 Content MathML for Specific Operators and Constants

223

http://www.openmath.org/cd/multiset1.xhtml#in
http://www.openmath.org/cd/multiset1.xhtml
http://www.openmath.org/cd/set1.xhtml#notin
http://www.openmath.org/cd/multiset1.xhtml#in
http://www.openmath.org/cd/multiset1.xhtml
http://www.openmath.org/cd/set1.xhtml#subset

 <ci type="set">B</ci>
</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊆<!--SUBSET OF OR EQUAL TO--></mo><mi>B</mi></mrow>

A ⊆ B
4.4.5.8 Proper Subset <prsubset/>

Class nary-set-reln

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols prsubset

The prsubset element represents the proper subset relation, i.e. that the first argument is a proper subset of the
second. As described in Section 4.3.4.3 N-ary Relations (classes nary-reln, nary-set-reln), it may also be used as
an n-ary operator to express that each argument is a proper subset of its predecessor.

Content MathML

<apply><prsubset/>
 <ci type="set">A</ci>
 <ci type="set">B</ci>
</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊂<!--SUBSET OF--></mo><mi>B</mi></mrow>

A ⊂ B
4.4.5.9 Not Subset <notsubset/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols notsubset

The notsubset element represents the negated subset relation. It is used to denote that the first argument is not
a subset of the second.

Content MathML

<apply><notsubset/>
 <ci type="set">A</ci>
 <ci type="set">B</ci>
</apply>

Sample Presentation

4 Content Markup

224

http://www.openmath.org/cd/set1.xhtml#prsubset
http://www.openmath.org/cd/set1.xhtml#notsubset

<mrow><mi>A</mi><mo>⊈<!--NEITHER A SUBSET OF NOR EQUAL TO--></mo><mi>B</mi>
</mrow>

A ⊈ B
When translating to Strict Content Markup, if the type has value "multiset", then the in symbol from multiset1
should be used instead.

4.4.5.10 Not Proper Subset <notprsubset/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols notprsubset

The notprsubset element represents the negated proper subset relation. It is used to denote that the first
argument is not a proper subset of the second.

Content MathML

<apply><notprsubset/>
 <ci type="set">A</ci>
 <ci type="set">B</ci>
</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊄<!--NOT A SUBSET OF--></mo><mi>B</mi></mrow>

A ⊄ B
When translating to Strict Content Markup, if the type has value "multiset", then the in symbol from multiset1
should be used instead.

4.4.5.11 Set Difference <setdiff/>

Class binary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols setdiff, setdiff

The setdiff element represents set difference operator. It takes two sets as arguments, and denotes the set that
contains all the elements that occur in the first set, but not in the second.

Content MathML

<apply><setdiff/>
 <ci type="set">A</ci>
 <ci type="set">B</ci>
</apply>

Sample Presentation

4.4 Content MathML for Specific Operators and Constants

225

http://www.openmath.org/cd/multiset1.xhtml#in
http://www.openmath.org/cd/multiset1.xhtml
http://www.openmath.org/cd/set1.xhtml#notprsubset
http://www.openmath.org/cd/multiset1.xhtml#in
http://www.openmath.org/cd/multiset1.xhtml
http://www.openmath.org/cd/set1.xhtml#setdiff
http://www.openmath.org/cd/multiset1.xhtml#setdiff

<mrow><mi>A</mi><mo>∖<!--SET MINUS--></mo><mi>B</mi></mrow>

A ∖ B
When translating to Strict Content Markup, if the type has value "multiset", then the in symbol from multiset1
should be used instead.

4.4.5.12 Cardinality <card/>

Class unary-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols size, size

The card element represents the cardinality function, which takes a set argument and returns its cardinality,
i.e. the number of elements in the set. The cardinality of a set is a non-negative integer, or an infinite cardinal
number.

Content MathML

<apply><eq/>
 <apply><card/><ci>A</ci></apply>
 <cn>5</cn>
</apply>

Sample Presentation

<mrow>
 <mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow>
 <mo>=</mo>
 <mn>5</mn>
</mrow>

A = 5
When translating to Strict Content Markup, if the type has value "multiset", then the size symbol from multiset1
should be used instead.

4.4.5.13 Cartesian product <cartesianproduct/>

Class nary-set

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols cartesian_product

The cartesianproduct element is used to represents the Cartesian product operator. It takes sets as argu-
ments, which may be explicitly specified in the enclosing apply element, or specified using qualifier elements
as described in Section 4.3.4.1 N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg,
nary-set, nary-constructor).

4 Content Markup

226

http://www.openmath.org/cd/multiset1.xhtml#in
http://www.openmath.org/cd/multiset1.xhtml
http://www.openmath.org/cd/set1.xhtml#size
http://www.openmath.org/cd/multiset1.xhtml#size
http://www.openmath.org/cd/multiset1.xhtml#size
http://www.openmath.org/cd/multiset1.xhtml
http://www.openmath.org/cd/set1.xhtml#cartesian_product

Content MathML

<apply><cartesianproduct/><ci>A</ci><ci>B</ci></apply>

Sample Presentation

<mrow><mi>A</mi><mo>×<!--MULTIPLICATION SIGN--></mo><mi>B</mi></mrow>

A × B
4.4.6 Sequences and Series

4.4.6.1 Sum <sum/>

Class sum

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols sum

The sum element represents the n-ary addition operator. The terms of the sum are normally specified by rule
through the use of qualifiers. While it can be used with an explicit list of arguments, this is strongly discouraged,
and the plus operator should be used instead in such situations.

The sum operator may be used either with or without explicit bound variables. When a bound variable is used,
the sum element is followed by one or more bvar elements giving the index variables, followed by qualifiers
giving the domain for the index variables. The final child in the enclosing apply is then an expression in the
bound variables, and the terms of the sum are obtained by evaluating this expression at each point of the domain
of the index variables. Depending on the structure of the domain, the domain of summation is often given by
using uplimit and lowlimit to specify upper and lower limits for the sum.

When no bound variables are explicitly given, the final child of the enclosing apply element must be a function,
and the terms of the sum are obtained by evaluating the function at each point of the domain specified by
qualifiers.

Content MathML

<apply><sum/>
 <bvar><ci>x</ci></bvar>
 <lowlimit><ci>a</ci></lowlimit>
 <uplimit><ci>b</ci></uplimit>
 <apply><ci>f</ci><ci>x</ci></apply>
</apply>

Sample Presentation

<mrow>
 <munderover>
 <mo>∑<!--N-ARY SUMMATION--></mo>
 <mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow>
 <mi>b</mi>
 </munderover>

4.4 Content MathML for Specific Operators and Constants

227

http://www.openmath.org/cd/arith1.xhtml#sum

 <mrow><mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>
</mfenced></mrow>

</mrow>

x = a
b f x

Content MathML

<apply><sum/>
 <bvar><ci>x</ci></bvar>
 <condition>
 <apply><in/><ci>x</ci><ci type="set">B</ci></apply>
 </condition>
 <apply><ci type="function">f</ci><ci>x</ci></apply>
</apply>

Sample Presentation

<mrow>
 <munder>
 <mo>∑<!--N-ARY SUMMATION--></mo>
 <mrow><mi>x</mi><mo>∈<!--ELEMENT OF--></mo><mi>B</mi></mrow>
 </munder>
 <mrow><mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

</mfenced></mrow>
</mrow>

x ∈ B f x
Content MathML

<apply><sum/>
 <domainofapplication>
 <ci type="set">B</ci>
 </domainofapplication>
 <ci type="function">f</ci>
</apply>

Sample Presentation

<mrow><munder><mo>∑<!--N-ARY SUMMATION--></mo><mi>B</mi></munder>
<mi>f</mi></mrow>

B f
Mapping to Strict Content MathML

4 Content Markup

228

When no explicit bound variables are used, no special rules are required to rewrite sums as Strict Content
beyond the generic rules for rewriting expressions using qualifiers. However, when bound variables are used, it
is necessary to introduce a lambda construction to rewrite the expression in the bound variables as a function.

Content MathML

<apply><sum/>
 <bvar><ci>i</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><cn>100</cn></uplimit>
 <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">sum</csymbol>
 <apply><csymbol cd="interval1">integer_interval</csymbol>
 <cn>0</cn>
 <cn>100</cn>
 </apply>
 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>i</ci></bvar>
 <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
 </bind>
</apply>

4.4.6.2 Product <product/>

Class product

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols product

The product element represents the n-ary multiplication operator. The terms of the product are normally
specified by rule through the use of qualifiers. While it can be used with an explicit list of arguments, this is
strongly discouraged, and the times operator should be used instead in such situations.

The product operator may be used either with or without explicit bound variables. When a bound variable is
used, the product element is followed by one or more bvar elements giving the index variables, followed by
qualifiers giving the domain for the index variables. The final child in the enclosing apply is then an expression
in the bound variables, and the terms of the product are obtained by evaluating this expression at each point of
the domain. Depending on the structure of the domain, it is commonly given using uplimit and lowlimit
qualifiers.

When no bound variables are explicitly given, the final child of the enclosing apply element must be a function,
and the terms of the product are obtained by evaluating the function at each point of the domain specified by
qualifiers.

Content MathML

<apply><product/>
 <bvar><ci>x</ci></bvar>

4.4 Content MathML for Specific Operators and Constants

229

http://www.openmath.org/cd/arith1.xhtml#product

 <lowlimit><ci>a</ci></lowlimit>
 <uplimit><ci>b</ci></uplimit>
 <apply><ci type="function">f</ci>
 <ci>x</ci>
 </apply>
</apply>

Sample Presentation

<mrow>
 <munderover>
 <mo>∏<!--N-ARY PRODUCT--></mo>
 <mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow>
 <mi>b</mi>
 </munderover>
 <mrow><mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

</mfenced></mrow>
</mrow>

x = a
b f x

Content MathML

<apply><product/>
 <bvar><ci>x</ci></bvar>
 <condition>
 <apply><in/>
 <ci>x</ci>
 <ci type="set">B</ci>
 </apply>
 </condition>
 <apply><ci>f</ci><ci>x</ci></apply>
</apply>

Sample Presentation

<mrow>
 <munder>
 <mo>∏<!--N-ARY PRODUCT--></mo>
 <mrow><mi>x</mi><mo>∈<!--ELEMENT OF--></mo><mi>B</mi></mrow>
 </munder>
 <mrow><mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

</mfenced></mrow>
</mrow>

x ∈ B f x
Mapping to Strict Content MathML

4 Content Markup

230

When no explicit bound variables are used, no special rules are required to rewrite products as Strict Content
beyond the generic rules for rewriting expressions using qualifiers. However, when bound variables are used, it
is necessary to introduce a lambda construction to rewrite the expression in the bound variables as a function.

Content MathML

<apply><product/>
 <bvar><ci>i</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><cn>100</cn></uplimit>
 <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">product</csymbol>
 <apply><csymbol cd="interval1">integer_interval</csymbol>
 <cn>0</cn>
 <cn>100</cn>
 </apply>
 <bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>i</ci></bvar>
 <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
 </bind>
</apply>

4.4.6.3 Limits <limit/>

Class limit

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers lowlimit, condition

OM Symbols limit, both_sides, above, below, null

The limit element represents the operation of taking a limit of a sequence. The limit point is expressed by
specifying a lowlimit and a bvar, or by specifying a condition on one or more bound variables.

Content MathML

<apply><limit/>
 <bvar><ci>x</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <apply><sin/><ci>x</ci></apply>
</apply>

Sample Presentation

<mrow>
 <munder>
 <mi>lim</mi>
 <mrow><mi>x</mi><mo>→<!--RIGHTWARDS ARROW--></mo><mn>0</mn></mrow>
 </munder>

4.4 Content MathML for Specific Operators and Constants

231

http://www.openmath.org/cd/limit1.xhtml#limit
http://www.openmath.org/cd/limit1.xhtml#both_sides
http://www.openmath.org/cd/limit1.xhtml#above
http://www.openmath.org/cd/limit1.xhtml#below
http://www.openmath.org/cd/limit1.xhtml#null

 <mrow><mi>sin</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>x</mi></mrow>
</mrow>

limx 0sin x
Content MathML

<apply><limit/>
 <bvar><ci>x</ci></bvar>
 <condition>
 <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
 </condition>
 <apply><sin/><ci>x</ci></apply>
</apply>

Sample Presentation

<mrow>
 <munder>
 <mi>lim</mi>
 <mrow><mi>x</mi><mo>→<!--RIGHTWARDS ARROW--></mo><mn>0</mn></mrow>
 </munder>
 <mrow><mi>sin</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>x</mi></mrow>
</mrow>

limx 0sin x
Content MathML

<apply><limit/>
 <bvar><ci>x</ci></bvar>
 <condition>
 <apply><tendsto type="above"/><ci>x</ci><ci>a</ci></apply>
 </condition>
 <apply><sin/><ci>x</ci></apply>
</apply>

Sample Presentation

<mrow>
 <munder>
 <mi>lim</mi>
 <mrow><mi>x</mi><mo>→<!--RIGHTWARDS ARROW--></mo><msup><mi>a</mi>

<mo>+</mo></msup></mrow>
 </munder>
 <mrow><mi>sin</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>x</mi></mrow>
</mrow>

limx a+sin x

4 Content Markup

232

The direction from which a limiting value is approached is given as an argument limit in Strict Content MathML,
which supplies the direction specifier symbols both_sides, above, and below for this purpose. The first corre-
spond to the values "all", "above", and "below" of the type attribute of the tendsto element below. The null
symbol corresponds to the case where no type attribute is present. We translate

Rewrite: limits condition

<apply><limit/>

 <bvar><ci>x</ci></bvar>
 <condition>

 <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
 </condition>

 <ci>expression-in-x</ci>
</apply>

Strict Content MathML equivalent

<apply><csymbol cd="limit1">limit</csymbol>

 <cn>0</cn>
 <csymbol cd="limit1">null</csymbol>
 <bind><csymbol cd="fns1">lambda</csymbol>

 <bvar><ci>x</ci></bvar>
 <ci>expression-in-x</ci>
 </bind>
</apply>

where <ci>expression-in-x</ci> is an arbitrary expression involving the bound variable(s), and the choice of
symbol, null depends on the type attribute of the tendsto element as described above.

4.4.6.4 Tends To <tendsto/>

Class binary-reln

Attributes CommonAtt, DefEncAtt, type?

type Attribute Values string

Content Empty

OM Symbols limit

The tendsto element is used to express the relation that a quantity is tending to a specified value. While this is
used primarily as part of the statement of a mathematical limit, it exists as a construct on its own to allow one
to capture mathematical statements such as "As x tends to y," and to provide a building block to construct more
general kinds of limits.

The tendsto element takes the attributes type to set the direction from which the limiting value is approached.

Content MathML

<apply><tendsto type="above"/>
 <apply><power/><ci>x</ci><cn>2</cn></apply>
 <apply><power/><ci>a</ci><cn>2</cn></apply>
</apply>

Sample Presentation

4.4 Content MathML for Specific Operators and Constants

233

http://www.openmath.org/cd/limit1.xhtml#limit
http://www.openmath.org/cd/limit1.xhtml#both_sides
http://www.openmath.org/cd/limit1.xhtml#above
http://www.openmath.org/cd/limit1.xhtml#below
http://www.openmath.org/cd/limit1.xhtml#null
http://www.openmath.org/cd/limit1.xhtml#null
http://www.openmath.org/cd/limit1.xhtml#limit

<mrow>
 <msup><mi>x</mi><mn>2</mn></msup>
 <mo>→<!--RIGHTWARDS ARROW--></mo>
 <msup><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo></msup>
</mrow>

x2 a2+
Content MathML

<apply><tendsto/>
 <vector><ci>x</ci><ci>y</ci></vector>
 <vector>
 <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
 <apply><ci type="function">g</ci><ci>x</ci><ci>y</ci></apply>
 </vector>
</apply>

Sample Presentation

<mfenced><mtable>
 <mtr><mtd><mi>x</mi></mtd></mtr>
 <mtr><mtd><mi>y</mi></mtd></mtr>
</mtable></mfenced>
<mo>→<!--RIGHTWARDS ARROW--></mo>
<mfenced><mtable>
 <mtr><mtd>
 <mi>f</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

<mi>y</mi></mfenced>
 </mtd></mtr>
 <mtr><mtd>
 <mi>g</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mfenced><mi>x</mi>

<mi>y</mi></mfenced>
 </mtd></mtr>
</mtable></mfenced>

xy f x, yx, y
Mapping to Strict Content MathML

The usage of tendsto to qualify a limit is formally defined by writing the expression in Strict Content MathML
via the rule Rewrite: limits condition. The meanings of other more idiomatic uses of tendsto are not formally
defined by this specification. When rewriting these cases to Strict Content MathML, tendsto should be rewrit-
ten to an annotated identifier as shown below.

Rewrite: tendsto

<tendsto/>

Strict Content MathML equivalent:

4 Content Markup

234

<semantics>
 <ci>tendsto</ci>
 <annotation-xml encoding="MathML-Content">
 <tendsto/>
 </annotation-xml>
</semantics>

4.4.7 Elementary classical functions

4.4.7.1 Common trigonometric functions <sin/>, <cos/>, <tan/>, <sec/>, <csc/>, <cot/>

Class unary-elementary

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols sin

These operator elements denote the standard trigonometric functions. Since their standard interpretations are
widely known, they are discussed as a group.

Content MathML

<apply><sin/><ci>x</ci></apply>

Sample Presentation

<mrow><mi>sin</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>x</mi></mrow>

sin x
Content MathML

<apply><sin/>
 <apply><plus/>
 <apply><cos/><ci>x</ci></apply>
 <apply><power/><ci>x</ci><cn>3</cn></apply>
 </apply>
</apply>

Sample Presentation

<mrow>
 <mi>sin</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mrow>
 <mo>(</mo>
 <mrow><mi>cos</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>x</mi></mrow>
 <mo>+</mo>
 <msup><mi>x</mi><mn>3</mn></msup>
 <mo>)</mo>
 </mrow>
</mrow>

4.4 Content MathML for Specific Operators and Constants

235

http://www.openmath.org/cd/transc1.xhtml#sin

sin cos x + x3
4.4.7.2 Common inverses of trigonometric functions <arcsin/>, <arccos/>, <arctan/>, <arcsec/>,
<arccsc/>, <arccot/>

Class unary-elementary

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols arcsin

These operator elements denote the inverses of standard trigonometric functions. Differing definitions are in
use so for maximum interoperability applications evaluating such expressions should follow the definitions in
[Abramowitz1977].

Content MathML

<apply><arcsin/><ci>x</ci></apply>

Sample Presentations

<mrow>
 <mi>arcsin</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mi>x</mi>
</mrow>

arcsin x
<mrow>
 <msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mi>x</mi>
</mrow>

sin−1 x
4.4.7.3 Common hyperbolic functions <sinh/>, <cosh/>, <tanh/>, <sech/>, <csch/>, <coth/>

Class unary-elementary

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols sinh

These operator elements denote the standard hyperbolic functions. Since their standard interpretations are widely
known, they are discussed as a group.

Content MathML

<apply><sinh/><ci>x</ci></apply>

Sample Presentation

4 Content Markup

236

http://www.openmath.org/cd/transc1.xhtml#arcsin
http://www.openmath.org/cd/transc1.xhtml#sinh

<mrow><mi>sinh</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>x</mi></mrow>

sinh x
4.4.7.4 Common inverses of hyperbolic functions <arcsinh/>, <arccosh/>, <arctanh/>,
<arcsech/>, <arccsch/>, <arccoth/>

Class unary-elementary

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols arcsinh

These operator elements denote the inverses of standard hyperbolic functions. Differing definitions are in use so
for maximum interoperability applications evaluating such expressions should follow the definitions in [Abramo-
witz1977].

Content MathML

<apply><arcsinh/><ci>x</ci></apply>

Sample Presentations

<mrow>
 <mi>arcsinh</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mi>x</mi>
</mrow>

arcsinh x
<mrow>
 <msup><mi>sinh</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mi>x</mi>
</mrow>

sinh−1 x
4.4.7.5 Exponential <exp/>

Class unary-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols exp

The exp element represents the exponentiation function associated with the inverse of the ln function. It takes
one argument.

Content MathML

<apply><exp/><ci>x</ci></apply>

4.4 Content MathML for Specific Operators and Constants

237

http://www.openmath.org/cd/transc1.xhtml#arcsinh
http://www.openmath.org/cd/transc1.xhtml#exp

Sample Presentation

<msup><mi>e</mi><mi>x</mi></msup>

ex
4.4.7.6 Natural Logarithm <ln/>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols ln

The ln element represents the natural logarithm function.

Content MathML

<apply><ln/><ci>a</ci></apply>

Sample Presentation

<mrow><mi>ln</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>a</mi></mrow>

ln a
4.4.7.7 Logarithm <log/>, <logbase>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers logbase

OM Symbols log

The log elements represents the logarithm function relative to a given base. When present, the logbase quali-
fier specifies the base. Otherwise, the base is assumed to be 10. apply.

Content MathML

<apply><log/>
 <logbase><cn>3</cn></logbase>
 <ci>x</ci>
</apply>

Sample Presentation

<mrow><msub><mi>log</mi><mn>3</mn></msub><mo>⁡<!--FUNCTION APPLICATION-->

</mo><mi>x</mi></mrow>

log3 x

4 Content Markup

238

http://www.openmath.org/cd/transc1.xhtml#ln
http://www.openmath.org/cd/transc1.xhtml#log

Content MathML

<apply><log/><ci>x</ci></apply>

Sample Presentation

<mrow><mi>log</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>x</mi></mrow>

log x
Mapping to Strict Content MathML

When mapping log to Strict Content, one uses the log symbol denoting the function that returns the log of
its second argument with respect to the base specified by the first argument. When logbase is present, it
determines the base. Otherwise, the default base of 10 must be explicitly provided in Strict markup. See the
following example.

<apply><plus/>
 <apply>
 <log/>
 <logbase><cn>2</cn></logbase>
 <ci>x</ci>
 </apply>
 <apply>
 <log/>
 <ci>y</ci>
 </apply>
</apply>

Strict Content MathML equivalent:

<apply>
 <csymbol cd="arith1">plus</csymbol>
 <apply>
 <csymbol cd="transc1">log</csymbol>
 <cn>2</cn>
 <ci>x</ci>
 </apply>
 <apply>
 <csymbol cd="transc1">log</csymbol>
 <cn>10</cn>
 <ci>y</ci>
 </apply>
</apply>

4.4 Content MathML for Specific Operators and Constants

239

http://www.openmath.org/cd/transc1.xhtml#log

4.4.8 Statistics

4.4.8.1 Mean <mean/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols mean, mean

The mean element represents the function returning arithmetic mean or average of a data set or random variable.

Content MathML

<apply><mean/>
 <cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn>
</apply>

Sample Presentation

<mrow>
 <mo>⟨<!--MATHEMATICAL LEFT ANGLE BRACKET--></mo>
 <mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>3</mn>
 <mo>,</mo><mn>7</mn><mo>,</mo><mn>4</mn>
 <mo>⟩<!--MATHEMATICAL RIGHT ANGLE BRACKET--></mo>
</mrow>

3, 4, 3, 7, 4
Content MathML

<apply><mean/><ci>X</ci></apply>

Sample Presentation

<mrow><mo>⟨<!--MATHEMATICAL LEFT ANGLE BRACKET--></mo><mi>X</mi>
<mo>⟩<!--MATHEMATICAL RIGHT ANGLE BRACKET--></mo></mrow>

X
<mover><mi>X</mi><mo>¯<!--MACRON--></mo></mover>

X
Mapping to Strict Markup

When the mean element is applied to an explicit list of arguments, the translation to Strict Content markup is
direct, using the mean symbol from the s_data1 content dictionary, as described in Rewrite: element. When it is
applied to a distribution, then the mean symbol from the s_dist1 content dictionary should be used. In the case
with qualifiers use Rewrite: n-ary domainofapplication with the same caveat.

4 Content Markup

240

http://www.openmath.org/cd/s_dist1.xhtml#mean
http://www.openmath.org/cd/s_data1.xhtml#mean
http://www.openmath.org/cd/s_data1.xhtml#mean
http://www.openmath.org/cd/s_data1.xhtml
http://www.openmath.org/cd/s_dist1.xhtml#mean
http://www.openmath.org/cd/s_dist1.xhtml

4.4.8.2 Standard Deviation <sdev/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols sdev, sdev

The sdev element is used to denote the standard deviation function for a data set or random variable. Standard
deviation is a statistical measure of dispersion given by the square root of the variance.

Content MathML

<apply><sdev/>
 <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>

Sample Presentation

<mrow>
 <mo>σ<!--GREEK SMALL LETTER SIGMA--></mo>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced>
</mrow>

σ 3, 4, 2, 2
Content MathML

<apply><sdev/>
 <ci type="discrete_random_variable">X</ci>
</apply>

Sample Presentation

<mrow><mo>σ<!--GREEK SMALL LETTER SIGMA--></mo><mo>⁡<!--FUNCTION APPLICATION-->

</mo><mfenced><mi>X</mi></mfenced></mrow>

σ X
Mapping to Strict Markup

When the sdev element is applied to an explicit list of arguments, the translation to Strict Content markup is
direct, using the sdev symbol from the s_data1 content dictionary, as described in Rewrite: element. When it is
applied to a distribution, then the sdev symbol from the s_dist1 content dictionary should be used. In the case
with qualifiers use Rewrite: n-ary domainofapplication with the same caveat.

4.4 Content MathML for Specific Operators and Constants

241

http://www.openmath.org/cd/s_dist1.xhtml#sdev
http://www.openmath.org/cd/s_data1.xhtml#sdev
http://www.openmath.org/cd/s_data1.xhtml#sdev
http://www.openmath.org/cd/s_data1.xhtml
http://www.openmath.org/cd/s_dist1.xhtml#sdev
http://www.openmath.org/cd/s_dist1.xhtml

4.4.8.3 Variance <variance/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols variance, variance

The variance element represents the variance of a data set or random variable. Variance is a statistical measure
of dispersion, averaging the squares of the deviations of possible values from their mean.

Content MathML

<apply><variance/>
 <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>

Sample Presentation

<mrow>
 <msup>
 <mo>σ<!--GREEK SMALL LETTER SIGMA--></mo>
 <mn>2</mn>
 </msup>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced>
</mrow>

σ2 3, 4, 2, 2
Content MathML

<apply><variance/>
 <ci type="discrete_random_variable"> X</ci>
</apply>

Sample Presentation

<mrow>
 <msup><mo>σ<!--GREEK SMALL LETTER SIGMA--></mo><mn>2</mn></msup>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>X</mi></mfenced>
</mrow>

σ2 X
Mapping to Strict Markup

When the variance element is applied to an explicit list of arguments, the translation to Strict Content markup
is direct, using the variance symbol from the s_data1 content dictionary, as described in Rewrite: element. When
it is applied to a distribution, then the variance symbol from the s_dist1 content dictionary should be used. In the
case with qualifiers use Rewrite: n-ary domainofapplication with the same caveat.

4 Content Markup

242

http://www.openmath.org/cd/s_dist1.xhtml#variance
http://www.openmath.org/cd/s_data1.xhtml#variance
http://www.openmath.org/cd/s_data1.xhtml#variance
http://www.openmath.org/cd/s_data1.xhtml
http://www.openmath.org/cd/s_dist1.xhtml#variance
http://www.openmath.org/cd/s_dist1.xhtml

4.4.8.4 Median <median/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols median

The median element represents an operator returning the median of its arguments. The median is a number
separating the lower half of the sample values from the upper half.

Content MathML

<apply><median/>
 <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>

Sample Presentation

<mrow>
 <mi>median</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced>
</mrow>

median 3, 4, 2, 2
Mapping to Strict Markup

When the median element is applied to an explicit list of arguments, the translation to Strict Content markup is
direct, using the median symbol from the s_data1 content dictionary, as described in Rewrite: element.

4.4.8.5 Mode <mode/>

Class nary-stats

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers BvarQ, DomainQ

OM Symbols mode

The mode element is used to denote the mode of its arguments. The mode is the value which occurs with the
greatest frequency.

Content MathML

<apply><mode/>
 <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>

Sample Presentation

<mrow>
 <mi>mode</mi>

4.4 Content MathML for Specific Operators and Constants

243

http://www.openmath.org/cd/s_data1.xhtml#median
http://www.openmath.org/cd/s_data1.xhtml#median
http://www.openmath.org/cd/s_data1.xhtml
http://www.openmath.org/cd/s_data1.xhtml#mode

 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn></mfenced>
</mrow>

mode 3, 4, 2, 2
Mapping to Strict Markup

When the mode element is applied to an explicit list of arguments, the translation to Strict Content markup is
direct, using the mode symbol from the s_data1 content dictionary, as described in Rewrite: element.

4.4.8.6 Moment <moment/>, <momentabout>

Class unary-functional

Attributes CommonAtt, DefEncAtt

Content Empty

Qualifiers degree, momentabout

OM Symbols moment, moment

The moment element is used to denote the ith moment of a set of data set or random variable. The moment
function accepts the degree and momentabout qualifiers. If present, the degree schema denotes the order
of the moment. Otherwise, the moment is assumed to be the first order moment. When used with moment, the
degree schema is expected to contain a single child. If present, the momentabout schema denotes the point
about which the moment is taken. Otherwise, the moment is assumed to be the moment about zero.

Content MathML

<apply><moment/>
 <degree><cn>3</cn></degree>
 <momentabout><mean/></momentabout>
 <cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn>
</apply>

Sample Presentation

<msub>
 <mrow>
 <mo>⟨<!--MATHEMATICAL LEFT ANGLE BRACKET--></mo>
 <msup>
 <mfenced><mn>6</mn><mn>4</mn><mn>2</mn><mn>2</mn><mn>5</mn></mfenced>
 <mn>3</mn>
 </msup>
 <mo>⟩<!--MATHEMATICAL RIGHT ANGLE BRACKET--></mo>
 </mrow>
 <mi>mean</mi>
</msub>

6, 4, 2, 2, 5 3 mean

4 Content Markup

244

http://www.openmath.org/cd/s_data1.xhtml#mode
http://www.openmath.org/cd/s_data1.xhtml
http://www.openmath.org/cd/s_data1.xhtml#moment
http://www.openmath.org/cd/s_dist1.xhtml#moment

Content MathML

<apply><moment/>
 <degree><cn>3</cn></degree>
 <momentabout><ci>p</ci></momentabout>
 <ci>X</ci>
</apply>

Sample Presentation

<msub>
 <mrow>
 <mo>⟨<!--MATHEMATICAL LEFT ANGLE BRACKET--></mo><msup><mi>X</mi><mn>3</mn>

</msup><mo>⟩<!--MATHEMATICAL RIGHT ANGLE BRACKET--></mo>
 </mrow>
 <mi>p</mi>
</msub>

X3 p
Mapping to Strict Markup

When rewriting to Strict Markup, the moment symbol from the s_data1 content dictionary is used when the
moment element is applied to an explicit list of arguments. When it is applied to a distribution, then the
moment symbol from the s_dist1 content dictionary should be used. Both operators take the degree as the first
argument, the point as the second, followed by the data set or random variable respectively.

<apply><moment/>
 <degree><cn>3</cn></degree>
 <momentabout><ci>p</ci></momentabout>
 <ci>X</ci>
</apply>

Strict Content MathML equivalent

<apply><csymbol cd="s_dist1">moment</csymbol>
 <cn>3</cn>
 <ci>p</ci>
 <ci>X</ci>
</apply>

4.4.9 Linear Algebra

4.4.9.1 Vector <vector>

Class nary-constructor

Attributes CommonAtt, DefEncAtt

Qualifiers BvarQ, DomainQ

Content ContExp*

OM Symbol vector

4.4 Content MathML for Specific Operators and Constants

245

http://www.openmath.org/cd/s_dist1.xhtml#moment
http://www.openmath.org/cd/s_data1.xhtml
http://www.openmath.org/cd/s_dist1.xhtml#moment
http://www.openmath.org/cd/s_dist1.xhtml
http://www.openmath.org/cd/linalg2.xhtml#vector

A vector is an ordered n-tuple of values representing an element of an n-dimensional vector space.

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a
matrix consisting of a single column, and the transpose of a vector as a matrix consisting of a single row.

The components of a vector may be given explicitly as child elements, or specified by rule as described in
Section 4.3.1.1 Container Markup for Constructor Symbols.

Content MathML

<vector>
 <apply><plus/><ci>x</ci><ci>y</ci></apply>
 <cn>3</cn>
 <cn>7</cn>
</vector>

Sample Presentation

<mrow>
 <mo>(</mo>
 <mtable>
 <mtr><mtd><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mtd></mtr>
 <mtr><mtd><mn>3</mn></mtd></mtr>
 <mtr><mtd><mn>7</mn></mtd></mtr>
 </mtable>
 <mo>)</mo>
</mrow>

x + y37
<mfenced>
 <mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>
 <mn>3</mn>
 <mn>7</mn>
</mfenced>

x + y, 3, 7
4.4.9.2 Matrix <matrix>

Class nary-constructor

Attributes CommonAtt, DefEncAtt

Qualifiers BvarQ, DomainQ

Content ContExp*

OM Symbol matrix

A matrix is regarded as made up of matrix rows, each of which can be thought of as a special type of vector.

Note that the behavior of the matrix and matrixrow elements is substantially different from the mtable and
mtr presentation elements.

4 Content Markup

246

http://www.openmath.org/cd/linalg2.xhtml#matrix

The matrix element is a constructor element, so the entries may be given explicitly as child elements, or
specified by rule as described in Section 4.3.1.1 Container Markup for Constructor Symbols. In the latter case,
the entries are specified by providing a function and a 2-dimensional domain of application. The entries of the
matrix correspond to the values obtained by evaluating the function at the points of the domain.

Content MathML

<matrix>
 <bvar><ci type="integer">i</ci></bvar>
 <bvar><ci type="integer">j</ci></bvar>
 <condition>
 <apply><and/>
 <apply><in/>
 <ci>i</ci>
 <interval><ci>1</ci><ci>5</ci></interval>
 </apply>
 <apply><in/>
 <ci>j</ci>
 <interval><ci>5</ci><ci>9</ci></interval>
 </apply>
 </apply>
 </condition>
 <apply><power/><ci>i</ci><ci>j</ci></apply>
</matrix>

Sample Presentation

<mrow>
 <mo>[</mo>
 <msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub>
 <mo>|</mo>
 <mrow>
 <msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub>
 <mo>=</mo>
 <msup><mi>i</mi><mi>j</mi></msup>
 </mrow>
 <mo>;</mo>
 <mrow>
 <mrow>
 <mi>i</mi>
 <mo>∈<!--ELEMENT OF--></mo>
 <mfenced open="[" close="]"><mi>1</mi><mi>5</mi></mfenced>
 </mrow>
 <mo>∧<!--LOGICAL AND--></mo>
 <mrow>
 <mi>j</mi>
 <mo>∈<!--ELEMENT OF--></mo>
 <mfenced open="[" close="]"><mi>5</mi><mi>9</mi></mfenced>
 </mrow>
 </mrow>
 <mo>]</mo>
</mrow>

mi, j mi, j = ij; i ∈ 1, 5 ∧ j ∈ 5, 9

4.4 Content MathML for Specific Operators and Constants

247

4.4.9.3 Matrix row <matrixrow>

Class nary-constructor

Attributes CommonAtt, DefEncAtt

Qualifiers BvarQ, DomainQ

Content ContExp*

OM Symbol matrixrow

This element is an n-ary constructor used to represent rows of matrices.

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.9.4 Determinant <determinant/>

Class unary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols determinant

This element is used for the unary function which returns the determinant of its argument, which should be a
square matrix.

Content MathML

<apply><determinant/>
 <ci type="matrix">A</ci>
</apply>

Sample Presentation

<mrow><mi>det</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>A</mi></mrow>

det A
4.4.9.5 Transpose <transpose/>

Class unary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols transpose

This element represents a unary function that signifies the transpose of the given matrix or vector.

Content MathML

<apply><transpose/>
 <ci type="matrix">A</ci>
</apply>

Sample Presentation

<msup><mi>A</mi><mi>T</mi></msup>

4 Content Markup

248

http://www.openmath.org/cd/linalg2.xhtml#matrixrow
http://www.openmath.org/cd/linalg1.xhtml#determinant
http://www.openmath.org/cd/linalg1.xhtml#transpose

AT
4.4.9.6 Selector <selector/>

Class nary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols vector_selector, matrix_selector

The selector element is the operator for indexing into vectors, matrices and lists. It accepts one or more
arguments. The first argument identifies the vector, matrix or list from which the selection is taking place, and
the second and subsequent arguments, if any, indicate the kind of selection taking place.

When selector is used with a single argument, it should be interpreted as giving the sequence of all elements
in the list, vector or matrix given. The ordering of elements in the sequence for a matrix is understood to be first
by column, then by row; so the resulting list is of matrix rows given entry by entry. That is, for a matrix ai, j ,
where the indices denote row and column, respectively, the ordering would be a1, 1, a1, 2, ⋯a2, 1, a2, 2⋯ etc.

When two arguments are given, and the first is a vector or list, the second argument specifies the index of an
entry in the list or vector. If the first argument is a matrix then the second argument specifies the index of a
matrix row.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the
second and third arguments specify the row and column indices of the selected element.

Content MathML

<apply><selector/><ci type="vector">V</ci><cn>1</cn></apply>

Sample Presentation

<msub><mi>V</mi><mn>1</mn></msub>

V1
Content MathML

<apply><eq/>
 <apply><selector/>
 <matrix>
 <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
 <matrixrow><cn>3</cn><cn>4</cn></matrixrow>
 </matrix>
 <cn>1</cn>
 </apply>
 <matrix>
 <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
 </matrix>
</apply>

Sample Presentation

4.4 Content MathML for Specific Operators and Constants

249

http://www.openmath.org/cd/linalg1.xhtml#vector_selector
http://www.openmath.org/cd/linalg1.xhtml#matrix_selector

<mrow>
 <msub>
 <mrow>
 <mo>(</mo>
 <mtable>
 <mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr>
 <mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr>
 </mtable>
 <mo>)</mo>
 </mrow>
 <mn>1</mn>
 </msub>
 <mo>=</mo>
 <mrow>
 <mo>(</mo>
 <mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable>
 <mo>)</mo>
 </mrow>
</mrow>

1 23 4 1 = 1 2
4.4.9.7 Vector product <vectorproduct/>

Class binary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols vectorproduct

This element represents the vector product. It takes two three-dimensional vector arguments and represents as
value a three-dimensional vector.

Content MathML

<apply><eq/>
 <apply><vectorproduct/>
 <ci type="vector"> A </ci>
 <ci type="vector"> B </ci>
 </apply>
 <apply><times/>
 <ci>a</ci>
 <ci>b</ci>
 <apply><sin/><ci>θ<!--GREEK SMALL LETTER THETA--></ci></apply>
 <ci type="vector"> N </ci>
 </apply>
</apply>

Sample Presentation

<mrow>
 <mrow><mi>A</mi><mo>×<!--MULTIPLICATION SIGN--></mo><mi>B</mi></mrow>
 <mo>=</mo>
 <mrow>

4 Content Markup

250

http://www.openmath.org/cd/linalg1.xhtml#vectorproduct

 <mi>a</mi>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>b</mi>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mrow><mi>sin</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>θ<!--GREEK

SMALL LETTER THETA--></mi></mrow>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>N</mi>
 </mrow>
</mrow>

A × B = absin θN
4.4.9.8 Scalar product <scalarproduct/>

Class binary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols scalarproduct

This element represents the scalar product function. It takes two vector arguments and returns a scalar value.

Content MathML

<apply><eq/>
 <apply><scalarproduct/>
 <ci type="vector">A</ci>
 <ci type="vector">B</ci>
 </apply>
 <apply><times/>
 <ci>a</ci>
 <ci>b</ci>
 <apply><cos/><ci>θ<!--GREEK SMALL LETTER THETA--></ci></apply>
 </apply>
</apply>

Sample Presentation

<mrow>
 <mrow><mi>A</mi><mo>.</mo><mi>B</mi></mrow>
 <mo>=</mo>
 <mrow>
 <mi>a</mi>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mi>b</mi>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mrow><mi>cos</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>θ<!--GREEK

SMALL LETTER THETA--></mi></mrow>
 </mrow>
</mrow>

A . B = abcos θ

4.4 Content MathML for Specific Operators and Constants

251

http://www.openmath.org/cd/linalg1.xhtml#scalarproduct

4.4.9.9 Outer product <outerproduct/>

Class binary-linalg

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols outerproduct

This element represents the outer product function. It takes two vector arguments and returns as value a matrix.

Content MathML

<apply><outerproduct/>
 <ci type="vector">A</ci>
 <ci type="vector">B</ci>
</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊗<!--CIRCLED TIMES--></mo><mi>B</mi></mrow>

A ⊗ B
4.4.10 Constant and Symbol Elements

This section explains the use of the Constant and Symbol elements.

4.4.10.1 integers <integers/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols Z

This element represents the set of integers, positive, negative and zero.

Content MathML

<apply><in/>
 <cn type="integer"> 42 </cn>
 <integers/>
</apply>

Sample Presentation

<mrow><mn>42</mn><mo>∈<!--ELEMENT OF--></mo><mi
mathvariant="double-struck">Z</mi></mrow>

42 ∈ ℤ

4 Content Markup

252

http://www.openmath.org/cd/linalg1.xhtml#outerproduct
http://www.openmath.org/cd/setname1.xhtml#Z

4.4.10.2 reals <reals/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols R

This element represents the set of real numbers.

Content MathML

<apply><in/>
 <cn type="real"> 44.997</cn>
 <reals/>
</apply>

Sample Presentation

<mrow>
 <mn>44.997</mn><mo>∈<!--ELEMENT OF--></mo><mi

mathvariant="double-struck">R</mi>
</mrow>

44.997 ∈ ℝ
4.4.10.3 Rational Numbers <rationals/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols Q

This element represents the set of rational numbers.

Content MathML

<apply><in/>
 <cn type="rational"> 22 <sep/>7</cn>
 <rationals/>
</apply>

Sample Presentation

<mrow>
 <mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>
 <mo>∈<!--ELEMENT OF--></mo>
 <mi mathvariant="double-struck">Q</mi>
</mrow>

22/7 ∈ ℚ

4.4 Content MathML for Specific Operators and Constants

253

http://www.openmath.org/cd/setname1.xhtml#R
http://www.openmath.org/cd/setname1.xhtml#Q

4.4.10.4 Natural Numbers <naturalnumbers/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols N

This element represents the set of natural numbers (including zero).

Content MathML

<apply><in/>
 <cn type="integer">1729</cn>
 <naturalnumbers/>
</apply>

Sample Presentation

<mrow>
 <mn>1729</mn><mo>∈<!--ELEMENT OF--></mo><mi

mathvariant="double-struck">N</mi>
</mrow>

1729 ∈ ℕ
4.4.10.5 complexes <complexes/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols C

This element represents the set of complex numbers.

Content MathML

<apply><in/>
 <cn type="complex-cartesian">17<sep/>29</cn>
 <complexes/>
</apply>

Sample Presentation

<mrow>
 <mrow><mn>17</mn><mo>+</mo><mn>29</mn><mo>⁢<!--INVISIBLE TIMES--></mo>

<mi>i</mi></mrow>
 <mo>∈<!--ELEMENT OF--></mo>
 <mi mathvariant="double-struck">C</mi>
</mrow>

17 + 29i ∈ ℂ

4 Content Markup

254

http://www.openmath.org/cd/setname1.xhtml#N
http://www.openmath.org/cd/setname1.xhtml#C

4.4.10.6 primes <primes/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols P

This element represents the set of positive prime numbers.

Content MathML

<apply><in/>
 <cn type="integer">17</cn>
 <primes/>
</apply>

Sample Presentation

<mrow><mn>17</mn><mo>∈<!--ELEMENT OF--></mo><mi
mathvariant="double-struck">P</mi></mrow>

17 ∈ ℙ
4.4.10.7 Exponential e <exponentiale/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols e

This element represents the base of the natural logarithm, approximately 2.718.

Content MathML

<apply><eq/>
 <apply><ln/><exponentiale/></apply>
 <cn>1</cn>
</apply>

Sample Presentation

<mrow>
 <mrow><mi>ln</mi><mo>⁡<!--FUNCTION APPLICATION--></mo><mi>e</mi></mrow>
 <mo>=</mo>
 <mn>1</mn>
</mrow>

ln e = 1

4.4 Content MathML for Specific Operators and Constants

255

http://www.openmath.org/cd/setname1.xhtml#P
http://www.openmath.org/cd/nums1.xhtml#e

4.4.10.8 Imaginary i <imaginaryi/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols i

This element represents the mathematical constant which is the square root of −1, commonly written i

Content MathML

<apply><eq/>
 <apply><power/><imaginaryi/><cn>2</cn></apply>
 <cn>-1</cn>
</apply>

Sample Presentation

<mrow><msup><mi>i</mi><mn>2</mn></msup><mo>=</mo><mn>-1</mn></mrow>

i2 = −1
4.4.10.9 Not A Number <notanumber/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols NaN

This element represents the notion of not-a-number, i.e. the result of an ill-posed floating computation. See
[IEEE754].

Content MathML

<apply><eq/>
 <apply><divide/><cn>0</cn><cn>0</cn></apply>
 <notanumber/>
</apply>

Sample Presentation

<mrow>
 <mrow><mn>0</mn><mo>/</mo><mn>0</mn></mrow>
 <mo>=</mo>
 <mi>NaN</mi>
</mrow>

0/0 = NaN

4 Content Markup

256

http://www.openmath.org/cd/nums1.xhtml#i
http://www.openmath.org/cd/nums1.xhtml#NaN

4.4.10.10 True <true/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols true

This element represents the Boolean value true, i.e. the logical constant for truth.

Content MathML

<apply><eq/>
 <apply><or/>
 <true/>
 <ci type="boolean">P</ci>
 </apply>
 <true/>
</apply>

Sample Presentation

<mrow>
 <mrow><mi>true</mi><mo>∨<!--LOGICAL OR--></mo><mi>P</mi></mrow>
 <mo>=</mo>
 <mi>true</mi>
</mrow>

true ∨ P = true
4.4.10.11 False <false/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols false

This element represents the Boolean value false, i.e. the logical constant for falsehood.

Content MathML

<apply><eq/>
 <apply><and/>
 <false/>
 <ci type="boolean">P</ci>
 </apply>
 <false/>
</apply>

Sample Presentation

<mrow>
 <mrow><mi>false</mi><mo>∧<!--LOGICAL AND--></mo><mi>P</mi></mrow>
 <mo>=</mo>

4.4 Content MathML for Specific Operators and Constants

257

http://www.openmath.org/cd/logic1.xhtml#true
http://www.openmath.org/cd/logic1.xhtml#false

 <mi>false</mi>
</mrow>

false ∧ P = false
4.4.10.12 Empty Set <emptyset/>

Class constant-set

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols emptyset, emptyset

This element is used to represent the empty set, that is the set which contains no members.

Content MathML

<apply><neq/>
 <integers/>
 <emptyset/>
</apply>

Sample Presentation

<mrow>
 <mi mathvariant="double-struck">Z</mi><mo>≠<!--NOT EQUAL TO--></mo>

<mi>∅<!--EMPTY SET--></mi>
</mrow>

ℤ ≠ ∅
Mapping to Strict Markup

In some situations, it may be clear from context that emptyset corresponds to the emptyset However, as
there is no method other than annotation for an author to explicitly indicate this, it is always acceptable to
translate to the emptyset symbol from the set1 CD.

4.4.10.13 pi <pi/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols pi

This element represents pi, approximately 3.142, which is the ratio of the circumference of a circle to its
diameter.

Content MathML

<apply><approx/>
 <pi/>
 <cn type="rational">22<sep/>7</cn>
</apply>

4 Content Markup

258

http://www.openmath.org/cd/set1.xhtml#emptyset
http://www.openmath.org/cd/multiset1.xhtml#emptyset
http://www.openmath.org/cd/multiset1.xhtml#emptyset
http://www.openmath.org/cd/set1.xhtml#emptyset
http://www.openmath.org/cd/set1.xhtml
http://www.openmath.org/cd/nums1.xhtml#pi

Sample Presentation

<mrow>
 <mi>π<!--GREEK SMALL LETTER PI--></mi>
 <mo>≃<!--ASYMPTOTICALLY EQUAL TO--></mo>
 <mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>
</mrow>

π ≃ 22/7
4.4.10.14 Euler gamma <eulergamma/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols gamma

This element denotes the gamma constant, approximately 0.5772.

Content MathML

<apply><approx/>
 <eulergamma/>
 <cn>0.5772156649</cn>
</apply>

Sample Presentation

<mrow><mi>γ<!--GREEK SMALL LETTER GAMMA--></mi><mo>≃<!--ASYMPTOTICALLY EQUAL

TO--></mo><mn>0.5772156649</mn></mrow>

γ ≃ 0.5772156649
4.4.10.15 infinity <infinity/>

Class constant-arith

Attributes CommonAtt, DefEncAtt

Content Empty

OM Symbols infinity

This element represents the notion of infinity.

Content MathML

<infinity/>

Sample Presentation

<mi>∞<!--INFINITY--></mi>

∞

4.4 Content MathML for Specific Operators and Constants

259

http://www.openmath.org/cd/nums1.xhtml#gamma
http://www.openmath.org/cd/nums1.xhtml#infinity

4.5 Deprecated Content Elements

4.5.1 Declare <declare>

Attributes CommonAtt, type, scope, occurrence, definitionURL, encoding

type Attribute defines the MathML element type of the identifier declared.

scope Attribute defines the scope of application of the declaration.

nargs Attribute number of arguments for function declarations.

occurrence Attribute values "prefix" | "infix" | "function-model"

definitionURL Attribute URI pointing to detailed semantics of the function.

encoding Attribute syntax of the detailed semantics of the function.

Content ContExp, ContExp?

MathML2 provided the declare element to bind properties like types to symbols and variables and to define
abbreviations for structure sharing. This element is deprecated in MathML 3. Structure sharing can obtained via
the share element (see Section 4.2.7 Structure Sharing <share> for details).

4.5.2 Relation <reln>

Content ContExp*

MathML1 provided the reln element to construct an equation or relation. This usage was deprecated in
MathML 2.0 in favor of the more generally usable apply.

4.5.3 Relation <fn>

Content ContExp

MathML1 provided the fn element to extend the collection of known mathematical functions. This usage was
deprecated in MathML 2.0 in favor of the more generally applicable csymbol.

4.6 The Strict Content MathML Transformation

MathML 3 assigns semantics to content markup by defining a mapping to Strict Content MathML. Strict
MathML, in turn, is in one-to-one correspondence with OpenMath, and the subset of OpenMath expressions
obtained from content MathML expressions in this fashion all have well-defined semantics via the standard
OpenMath Content Dictionary set. Consequently, the mapping of arbitrary content MathML expressions to
equivalent Strict Content MathML plays a key role in underpinning the meaning of content MathML.

The mapping of arbitrary content MathML into Strict content MathML is defined algorithmically. The algorithm
is described below as a collection of rewrite rules applying to specific non-Strict constructions. The individual
rewrite transformations have been described in detail in context above. The goal of this section is to outline the
complete algorithm in one place.

The algorithm is a sequence of nine steps. Each step is applied repeatedly to rewrite the input until no further
application is possible. Note that in many programming languages, such as XSLT, the natural implementation
is as a recursive algorithm, rather than the multi-pass implementation suggested by the description below. The
translation to XSL is straightforward and produces the same eventual Strict Content MathML. However, because
the overall structure of the multi-pass algorithm is clearer, that is the formulation given here.

To transform an arbitrary content MathML expression into Strict Content MathML, apply each of the following
rules in turn to the input expression until all instances of the target constructs have been eliminated:

4 Content Markup

260

1. Rewrite non-strict bind and elminate deprecated elements: Change the outer bind tags in binding expres-1.
sions to apply if they have qualifiers or multiple children. This simplifies the algorithm by allowing the
subsequent rules to be applied to non-strict binding expressions without case distinction. Note that the later
rules will change the apply elements introduced in this step back to bind elements. Also in this step,
deprecated reln elements are rewritten to apply, and fn elements are replaced by the child expressions
they enclose.

2. Apply special case rules for idiomatic uses of qualifiers:2.

a. Rewrite derivatives with rules Rewrite: diff, Rewrite: nthdiff, and Rewrite: partialdiffdegree to a.
explicate the binding status of the variables involved.

b. Rewrite integrals with the rules Rewrite: int, Rewrite: defint and Rewrite: defint limits to disambigu-b.
ate the status of bound and free variables and of the orientation of the range of integration if it is
given as a lowlimit/uplimit pair.

c. Rewrite limits as described in Rewrite: tendsto and Rewrite: limits condition.c.

d. Rewrite sums and products as described in Section 4.4.6.1 Sum <sum/> and Section 4.4.6.2 Product d.
<product/>.

e. Rewrite roots as described in Section 4.4.2.11 Root <root/>.e.

f. Rewrite logarithms as described in Section 4.4.7.7 Logarithm <log/>, <logbase> .f.

g. Rewrite moments as described in Section 4.4.8.6 Moment <moment/>, <momentabout>.g.

3. Rewrite Qualifiers to domainofapplication: These rules rewrite all apply constructions using bvar 3.
and qualifiers to those using only the general domainofapplication qualifier.

a. Intervals: Rewrite qualifiers given as interval and lowlimit/uplimit to intervals of integers a.
via Rewrite: interval qualifier.

b. Multiple conditions: Rewrite multiple condition qualifiers to a single one by taking their b.
conjunction. The resulting compound condition is then rewritten to domainofapplication
according to rule Rewrite: condition.

c. Multiple domainofapplications: Rewrite multiple domainofapplication qualifiers to a sin-c.
gle one by taking the intersection of the specified domains.

4. Normalize Container Markup:4.

a. Rewrite sets and lists by the rule Rewrite: n-ary setlist domainofapplication.a.

b. Rewrite interval, vectors, matrices, and matrix rows as described in Section 4.4.1.1 Inter-b.
val <interval>, Section 4.4.9.1 Vector <vector>, Section 4.4.9.2 Matrix <matrix> and
Section 4.4.9.3 Matrix row <matrixrow>. Note any qualifiers will have been rewritten to
domainofapplication and will be further rewritten in Step 6.

c. Rewrite lambda expressions by the rules Rewrite: lambda and Rewrite: lambda domainofapplicationc.

d. Rewrite piecewise functions as described in Section 4.4.1.9 Piecewise declaration <piecewise>, d.
<piece>, <otherwise>.

5. Apply Special Case Rules for Operators using domainofapplication Qualifiers: This step deals with 5.
the special cases for the operators introduced in Section 4.4 Content MathML for Specific Operators and
Constants. There are different classes of special cases to be taken into account:

a. Rewrite min, max, mean and similar n-ary/unary operators by the rules Rewrite: n-ary unary set, a.
Rewrite: n-ary unary domainofapplication and Rewrite: n-ary unary single.

b. Rewrite the quantifiers forall and exists used with domainofapplication to expressions b.
using implication and conjunction by the rule Rewrite: quantifier.

c. Rewrite integrals used with a domainofapplication element (with or without a bvar) according c.
to the rules Rewrite: int and Rewrite: defint.

4.6 The Strict Content MathML Transformation

261

d. Rewrite sums and products used with a domainofapplication element (with or without a bvar) d.
as described in Section 4.4.6.1 Sum <sum/> and Section 4.4.6.2 Product <product/>.

6. Eliminate domainofapplication: At this stage, any apply has at most one domainofapplication 6.
child and special cases have been addressed. As domainofapplication is not Strict Content MathML, it
is rewritten

a. into an application of a restricted function via the rule Rewrite: restriction if the apply does not a.
contain a bvar child.

b. into an application of the predicate_on_list symbol via the rules Rewrite: n-ary relations and b.
Rewrite: n-ary relations bvar if used with a relation.

c. into a construction with the apply_to_list symbol via the general rule Rewrite: n-ary domainofappli-c.
cation for general n-ary operators.

d. into a construction using the suchthat symbol from the set1 content dictionary in an apply with d.
bound variables via the Rewrite: apply bvar domainofapplication rule.

7. Rewrite non-strict token elements:7.

a. Rewrite numbers represented as cn elements where the type attribute is one of "e-notation", a.
"rational", "complex-cartesian", "complex-polar", "constant" as strict cn via rules Rewrite: cn sep,
Rewrite: cn based_integer and Rewrite: cn constant.

b. Rewrite any ci, csymbol or cn containing presentation MathML to semantics elements with b.
rules Rewrite: cn presentation mathml and Rewrite: ci presentation mathml and the analogous rule
for csymbol.

8. Rewrite operators: Rewrite any remaining operator defined in Section 4.4 Content MathML for Specific 8.
Operators and Constants to a csymbol referencing the symbol identified in the syntax table by the rule
Rewrite: element. As noted in the descriptions of each operator element, some require special case rules to
determine the proper choice of symbol. Some cases of particular note are:

a. The order of the arguments for the selector operator must be rewritten, and the symbol depends a.
on the type of the arguments.

b. The choice of symbol for the minus operator depends on the number of the arguments.b.

c. The choice of symbol for some set operators depends on the values of the type of the arguments.c.

d. The choice of symbol for some statistical operators depends on the values of the types of the d.
arguments.

9. Rewrite non-strict attributes:9.

a. Rewrite the type attribute: At this point, all elements that accept the type, other than ci and a.
csymbol, should have been rewritten into Strict Content Markup equivalents without type attrib-
utes, where type information is reflected in the choice of operator symbol. Now rewrite remaining
ci and csymbol elements with a type attribute to a strict expression with semantics according to
rules Rewrite: ci type annotation and Rewrite: csymbol type annotation.

b. Rewrite definitionURL and encoding attributes: If the definitionURL and encoding attrib-b.
utes on a csymbol element can be interpreted as a reference to a content dictionary (see Section
4.2.3.2 Non-Strict uses of <csymbol> for details), then rewrite to reference the content dictionary
by the cd attribute instead.

c. Rewrite attributes: Rewrite any element with attributes that are not allowed in strict markup to a c.
semantics construction with the element without these attributes as the first child and the attributes
in annotation elements by rule Rewrite: attributes.

4 Content Markup

262

http://www.openmath.org/cd/fns2.xhtml#predicate_on_list
http://www.openmath.org/cd/fns2.xhtml#apply_to_list
http://www.openmath.org/cd/set1.xhtml#suchthat
http://www.openmath.org/cd/set1.xhtml

5 Mixing Markup Languages for Mathematical Expressions

MathML markup can be combined with other markup languages, and these mixing constructions are realized
by the semantic annotation elements. The semantic annotation elements provide an important tool for making
associations between alternate representations of an expression, and for associating semantic properties and
other attributions with a MathML expression. These elements allow presentation markup and content markup
to be combined in several different ways. One method, known as mixed markup, is to intersperse content and
presentation elements in what is essentially a single tree. Another method, known as parallel markup, is to
provide both explicit presentation markup and content markup in a pair of markup expressions, combined by a
single semantics element.

5.1 Annotation Framework

An important concern of MathML is to represent associations between presentation and content markup forms
for an expression. Representing associations between MathML expressions and data of other kinds is also
important in many contexts. For this reason, MathML provides a general framework for annotation. A MathML
expression may be decorated with a sequence of pairs made up of a symbol that indicates the kind of annotation,
known as the annotation key, and associated data, known as the annotation value.

5.1.1 Annotation elements

The semantics, annotation, and annotation-xml elements are used together to represent annotations
in MathML. The semantics element provides the container for a expression and its annotations. The
annotation element is the container for text annotations, and the annotation-xml element is used for struc-
tured annotations. The semantics element contains the expression being annotated as its first child, followed by
a sequence of zero or more annotation and/or annotation-xml elements.

<semantics>
 <mrow>
 <mrow>
 <mi>sin</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>x</mi></mfenced>
 </mrow>
 <mo>+</mo>
 <mn>5</mn>
 </mrow>
 <annotation encoding="application/x-tex">
 \sin x + 5
 </annotation>
 <annotation-xml encoding="application/openmath+xml">
 <OMA xmlns="http://www.openmath.org/OpenMath">
 <OMS cd="arith1" name="plus"/>
 <OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>
 <OMI>5</OMI>
 </OMA>
 </annotation-xml>
</semantics>

Note that this example makes use of the namespace extensibility that is only available in the XML syntax
of MathML. If this example is included in an HTML document then it would be considered invalid and
the OpenMath elements would be parsed as elements un the MathML namespace. See Section 5.2.3.3 Using
annotation-xml in HTML documents for details.

263

The semantics element is considered to be both a presentation element and a content element, and may be used
in either context. All MathML processors should process the semantics element, even if they only process one
of these two subsets of MathML.

5.1.2 Annotation keys

An annotation key specifies the relationship between an expression and an annotation. Many kinds of relation-
ships are possible. Examples include alternate representations, specification or clarification of semantics, type
information, rendering hints, and private data intended for specific processors. The annotation key is the primary
means by which a processor determines whether or not to process an annotation.

The logical relationship between an expression and an annotation can have a significant impact on the proper
processing of the expression. For example, a particular annotation form, called semantic attributions, cannot be
ignored without altering the meaning of the annotated expression, at least in some processing contexts. On the
other hand, alternate representations do not alter the meaning of an expression, but may alter the presentation of
the expression as they are frequently used to provide rendering hints. Still other annotations carry private data
or metadata that are useful in a specific context, but do not alter either the semantics or the presentation of the
expression.

In MathML 3, annotation keys are defined as symbols in Content Dictionaries, and are specified using of the
cd and name attributes on the annotation and annotation-xml elements. For backward compatibility with
MathML 2, an annotation key may also be referenced using the definitionURL attribute as an alternative
to the cd and name attributes. Further details on referencing symbols in Content Dictionaries are discussed in
Section 4.2.3 Content Symbols <csymbol>. The symbol definition in a Content Dictionary for an annotation
key may have a role property. Two particular roles are relevant for annotations: a role of "attribution" identifies
a generic annotation that can be ignored without altering the meaning of the annotated term, and a role of
"semantic-attribution" indicates that the annotation is a semantic annotation, that is, the annotation cannot be
ignored without potentially altering the meaning of the expression.

MathML 3 provides two predefined annotation keys for the most common kinds of annotations: alternate-
representation and contentequiv defined in the mathmlkeys content dictionary. The alternate-representation
annotation key specifies that the annotation value provides an alternate representation for an expression in some
other markup language, and the contentequiv annotation key specifies that the annotation value provides a
semantically equivalent alternative for the annotated expression. Further details about the use of these keys is
given in the sections below.

The default annotation key is alternate-representation when no annotation key is explicitly specified on an
annotation or annotation-xml element.

Typically, annotation keys specify only the logical nature of the relationship between an expression and an
annotation. The data format for an annotation is indicated with the encoding attribute. In MathML 2, the
encoding attribute was the primary information that a processor could use to determine whether or not it
could understand an annotation. For backward compatibility, processors are encouraged to examine both the
annotation key and encoding attribute. In particular, MathML 2 specified the predefined encoding values
MathML, MathML-Content, and MathML-Presentation. The MathML encoding value is used to indicate an
annotation-xml element contains a MathML expression. The use of the other values is more specific, as
discussed in following sections.

While the predefined alternate-representation and contentequiv keys cover many common use cases, user com-
munities are encouraged to define and standardize additional content dictionaries as necessary. Annotation keys
in user-defined, public Content Dictionaries are preferred over private encoding attribute value conventions,
since content dictionaries are more expressive, more open and more maintainable than private encoding values.
However, for backward compatibility with MathML 2, the encoding attribute may also be used.

5 Mixing Markup Languages for Mathematical Expressions

264

http://www.openmath.org/cd/mathmlkeys.xhtml#alternate-representation
http://www.openmath.org/cd/mathmlkeys.xhtml#contentequiv
http://www.openmath.org/cd/mathmlkeys.xhtml
http://www.openmath.org/cd/mathmlkeys.xhtml#alternate-representation
http://www.openmath.org/cd/mathmlkeys.xhtml#contentequiv
http://www.openmath.org/cd/mathmlkeys.xhtml#alternate-representation
http://www.openmath.org/cd/mathmlkeys.xhtml#alternate-representation
http://www.openmath.org/cd/mathmlkeys.xhtml#contentequiv

5.1.3 Alternate representations

Alternate representation annotations are most often used to provide renderings for an expression, or to provide
an equivalent representation in another markup language. In general, alternate representation annotations do not
alter the meaning of the annotated expression, but may alter its presentation.

A particularly important case is the use of a presentation MathML expression to indicate a preferred render-
ing for a content MathML expression. This case may be represented by labeling the annotation with the
application/mathml-presentation+xml value for the encoding attribute. For backward compatibility
with MathML 2.0, this case can also be represented with the equivalent MathML-Presentation value for the
encoding attribute. Note that when a presentation MathML annotation is present in a semantics element, it
may be used as the default rendering of the semantics element, instead of the default rendering of the first
child.

In the example below, the semantics element binds together various alternate representations for a content
MathML expression. The presentation MathML annotation may be used as the default rendering, while the other
annotations give representations in other markup languages. Since no attribution keys are explicitly specified, the
default annotation key alternate-representation applies to each of the annotations.

<semantics>
 <apply>
 <plus/>
 <apply><sin/><ci>x</ci></apply>
 <cn>5</cn>
 </apply>
 <annotation-xml encoding="MathML-Presentation">
 <mrow>
 <mrow>
 <mi>sin</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced open="(" close=")"><mi>x</mi></mfenced>
 </mrow>
 <mo>+</mo>
 <mn>5</mn>
 </mrow>
 </annotation-xml>
 <annotation encoding="application/x-maple">
 sin(x) + 5
 </annotation>
 <annotation encoding="application/vnd.wolfram.mathematica">
 Sin[x] + 5
 </annotation>
 <annotation encoding="application/x-tex">
 \sin x + 5
 </annotation>
 <annotation-xml encoding="application/openmath+xml">
 <OMA xmlns="http://www.openmath.org/OpenMath">
 <OMA>
 <OMS cd="arith1" name="plus"/>
 <OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>
 <OMI>5</OMI>
 </OMA>
 </OMA>
 </annotation-xml>
</semantics>

5.1 Annotation Framework

265

http://www.openmath.org/cd/mathmlkeys.xhtml#alternate-representation

Note that this example makes use of the namespace extensibility that is only available in the XML syntax
of MathML. If this example is included in an HTML document then it would be considered invalid and
the OpenMath elements would be parsed as elements un the MathML namespace. See Section 5.2.3.3 Using
annotation-xml in HTML documents for details.

5.1.4 Content equivalents

Content equivalent annotations provide additional computational information about an expression. Annotations
with the contentequiv key cannot be ignored without potentially changing the behavior of an expression.

An important case arises when a content MathML annotation is used to disambiguate the meaning of a presen-
tation MathML expression. This case may be represented by labeling the annotation with the application/
mathml-content+xml value for the encoding attribute. In MathML 2, this type of annotation was represented
with the equivalent MathML-Content value for the encoding attribute, so processors are urged to support this
usage for backward compatibility. A content MathML annotation, whether in MathML 2 or 3, may be used
for other purposes as well, such as for other kinds of semantic assertions. Consequently, in MathML 3, the
contentequiv annotation key should be used to make an explicit assertion that the annotation provides a definitive
content markup equivalent for an expression.

In the example below, an ambiguous presentation MathML expression is annotated with a MathML-Content
annotation clarifying its precise meaning.

<semantics>
 <mrow>
 <mrow>
 <mi>a</mi>
 <mfenced open="(" close=")">
 <mrow><mi>x</mi><mo>+</mo><mn>5</mn></mrow>
 </mfenced>
 </mrow>
 </mrow>
 <annotation-xml cd="mathmlkeys" name="contentequiv"

encoding="MathML-Content">
 <apply>
 <ci>a</ci>
 <apply><plus/><ci>x</ci><cn>5</cn></apply>
 </apply>
 </annotation-xml>
</semantics>

5.1.5 Annotation references

In the usual case, each annotation element includes either character data content (in the case of annotation) or
XML markup data (in the case of annotation-xml) that represents the annotation value. There is no restriction
on the type of annotation that may appear within a semantics element. For example, an annotation could
provide a TEX encoding, a linear input form for a computer algebra system, a rendered image, or detailed
mathematical type information.

In some cases the alternative children of a semantics element are not an essential part of the behavior of
the annotated expression, but may be useful to specialized processors. To enable the availability of several
annotation formats in a more efficient manner, a semantics element may contain empty annotation and
annotation-xml elements that provide encoding and src attributes to specify an external location for the
annotation value associated with the annotation. This type of annotation is known as an annotation reference.

5 Mixing Markup Languages for Mathematical Expressions

266

http://www.openmath.org/cd/mathmlkeys.xhtml#contentequiv
http://www.openmath.org/cd/mathmlkeys.xhtml#contentequiv

<semantics>
 <mfrac><mi>a</mi><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfrac>
 <annotation encoding="image/png" src="333/formula56.png"/>
 <annotation encoding="application/x-maple" src="333/formula56.ms"/>
</semantics>

Processing agents that anticipate that consumers of exported markup may not be able to retrieve the external
entity referenced by such annotations should request the content of the external entity at the indicated location
and replace the annotation with its expanded form.

An annotation reference follows the same rules as for other annotations to determine the annotation key that
specifies the relationship between the annotated object and the annotation value.

5.2 Elements for Semantic Annotations

This section explains the semantic mapping elements semantics, annotation, and annotation-xml. These
elements associate alternate representations for a presentation or content expression, or associate semantic or
other attributions that may modify the meaning of the annotated expression.

5.2.1 The <semantics> element

5.2.1.1 Description

The semantics element is the container element that associates annotations with a MathML expression. The
semantics element has as its first child the expression to be annotated. Any MathML expression may appear
as the first child of the semantics element. Subsequent annotation and annotation-xml children enclose
the annotations. An annotation represented in XML is enclosed in an annotation-xml element. An annotation
represented in character data is enclosed in an annotation element.

As noted above, the semantics element is considered to be both a presentation element and a content element,
since it can act as either, depending on its content. Consequently, all MathML processors should process the
semantics element, even if they process only presentation markup or only content markup.

The default rendering of a semantics element is the default rendering of its first child. A renderer may use the
information contained in the annotations to customize its rendering of the annotated element.

<semantics>
 <mrow>
 <mrow>
 <mi>sin</mi>
 <mo>⁡<!--FUNCTION APPLICATION--></mo>
 <mfenced><mi>x</mi></mfenced>
 </mrow>
 <mo>+</mo>
 <mn>5</mn>
 </mrow>
 <annotation-xml cd="mathmlkeys" name="contentequiv"

encoding="MathML-Content">
 <apply>
 <plus/>
 <apply><sin/><ci>x</ci></apply>
 <cn>5</cn>
 </apply>
 </annotation-xml>

5.2 Elements for Semantic Annotations

267

 <annotation encoding="application/x-tex">
 \sin x + 5
 </annotation>
</semantics>

5.2.1.2 Attributes

Name values default

definitionURL URI none
The location of an external source for semantic information

encoding string none
The encoding of the external semantic information

The semantics element takes the definitionURL and encoding attributes, which reference an external
source for some or all of the semantic information for the annotated element, as modified by the annotation. The
use of these attributes on the semantics element is deprecated in MathML3.

5.2.2 The <annotation> element

5.2.2.1 Description

The annotation element is the container element for a semantic annotation whose representation is parsed
character data in a non-XML format. The annotation element should contain the character data for the
annotation, and should not contain XML markup elements. If the annotation contains one of the XML reserved
characters &, < then these characters must be encoded using an entity reference or (in the XML syntax) an XML
CDATA section.

5.2.2.2 Attributes

Name values default

definitionURL URI none
The location of the annotation key symbol

encoding string none
The encoding of the semantic information in the annotation

cd string mathmlkeys
The content dictionary that contains the annotation key symbol

name string alternate-representation
The name of the annotation key symbol

src URI none
The location of an external source for semantic information

Taken together, the cd and name attributes specify the annotation key symbol, which identifies the relationship
between the annotated element and the annotation, as described in Section 5.1.1 Annotation elements. The
definitionURL attribute provides an alternate way to reference the annotation key symbol as a single attribute.
If none of these attributes are present, the annotation key symbol is the symbol alternate-representation from the
mathmlkeys content dictionary.

The encoding attribute describes the content type of the annotation. The value of the encoding attribute may
contain a media type that identifies the data format for the encoding data. For data formats that do not have an
associated media type, implementors may choose a self-describing character string to identify their content type.

The src attribute provides a mechanism to attach external entities as annotations on MathML expressions.

5 Mixing Markup Languages for Mathematical Expressions

268

http://www.openmath.org/cd/mathmlkeys.xhtml#alternate-representation
http://www.openmath.org/cd/mathmlkeys.xhtml

<annotation encoding="image/png" src="333/formula56.png"/>

The annotation element is a semantic mapping element that may only be used as a child of the semantics
element. While there is no default rendering for the annotation element, a renderer may use the information
contained in an annotation to customize its rendering of the annotated element.

5.2.3 The <annotation-xml> element

5.2.3.1 Description

The annotation-xml element is the container element for a semantic annotation whose representation is
structured markup. The annotation-xml element should contain the markup elements, attributes, and character
data for the annotation.

5.2.3.2 Attributes

Name values default

definitionURL URI none
The location of the annotation key symbol

encoding string none
The encoding of the semantic information in the annotation

cd string mathmlkeys
The content dictionary that contains the annotation key symbol

name string alternate-representation
The name of the annotation key symbol

src URI none
The location of an external source for semantic information

Taken together, the cd and name attributes specify the annotation key symbol, which identifies the relationship
between the annotated element and the annotation, as described in Section 5.1.1 Annotation elements. The
definitionURL attribute provides an alternate way to reference the annotation key symbol as a single attribute.
If none of these attributes are present, the annotation key symbol is the symbol alternate-representation from the
mathmlkeys content dictionary.

The encoding attribute describes the content type of the annotation. The value of the encoding attribute may
contain a media type that identifies the data format for the encoding data. For data formats that do not have an
associated media type, implementors may choose a self-describing character string to identify their content type.
In particular, as described above and in Section 6.2.4 Names of MathML Encodings, MathML specifies MathML,
MathML-Presentation, and MathML-Content as predefined values for the encoding attribute. Finally, The
src attribute provides a mechanism to attach external XML entities as annotations on MathML expressions.

<annotation-xml cd="mathmlkeys" name="contentequiv" encoding="MathML-Content">
 <apply>
 <plus/>
 <apply><sin/><ci>x</ci></apply>
 <cn>5</cn>
 </apply>
</annotation-xml>

<annotation-xml encoding="application/openmath+xml">
 <OMA xmlns="http://www.openmath.org/OpenMath">
 <OMS cd="arith1" name="plus"/>

5.2 Elements for Semantic Annotations

269

http://www.openmath.org/cd/mathmlkeys.xhtml#alternate-representation
http://www.openmath.org/cd/mathmlkeys.xhtml

 <OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>
 <OMI>5</OMI>
 </OMA>
</annotation-xml>

When the MathML is being parsed as XML and the annotation value is represented in an XML dialect other than
MathML, the namespace for the XML markup for the annotation should be identified by means of namespace
attributes and/or namespace prefixes on the annotation value. For instance:

<annotation-xml encoding="application/xhtml+xml">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>E</title></head>
 <body>
 <p>The base of the natural logarithms, approximately 2.71828.</p>
 </body>
 </html>
</annotation-xml>

The annotation-xml element is a semantic mapping element that may only be used as a child of the
semantics element. While there is no default rendering for the annotation-xml element, a renderer may use
the information contained in an annotation to customize its rendering of the annotated element.

5.2.3.3 Using annotation-xml in HTML documents

Note that the Namespace extensibility used in the above examples may not be available if the MathML is not
being treated as an XML document. In particular HTML parsers treat xmlns attributes as ordinary attributes, so
the OpenMath example would be classified as invalid by an HTML validator. The OpenMath elements would
still be parsed as children of the annotation-xml element, however they would be placed in the MathML
namespace. The above examples are not rendered in the HTML version of this specification, to ensure that that
document is a valid HTML5 document.

The details of the HTML parser handling of annotation-xml is specified in [HTML5] and summarized in
Section 6.4.3 Mixing MathML and HTML, however the main differences from the behavior of an XML parser
that affect MathML annotations are that the HTML parser does not treat xmlns attributes, nor : in element
names as special and has built-in rules determining whether the three "known" namespaces, HTML, SVG or
MathML are used.

• If the annotation-xml has an encoding attribute that is (ignoring case differences) "text/html" or •
"annotation/xhtml+xml" then the content is parsed as HTML and placed (initially) in the HTML name-
space.

• Otherwise it is parsed as foreign content and parsed in a more XML-like manner (like MathML itself in •
HTML) in which /> signifies an empty element. Content will be placed in the MathML namespace.

If any recognised HTML element appears in this foreign content annotation the HTML parser will effec-
tively termnate the math expression, closing all open elements until the math element is closed, and then
process the nested HTML as if it were not inside the math context. Any following MathML elements will
then not render correctly as they are not in a math context, or in the MathML namespace.

These issues mean that the following example is valid whether parsed by an XML or HTML parser:

<math>
 <semantics>
 <mi>a</mi>
 <annotation-xml encoding="text/html">

5 Mixing Markup Languages for Mathematical Expressions

270

 xxx
 </annotation-xml>
 </semantics>
 <mo>+</mo>
 <mi>b</mi>
</math>

However the if the encoding attribute is omitted then the expression is only valid if parsed as XML:

<math>
 <semantics>
 <mi>a</mi>
 <annotation-xml>
 xxx
 </annotation-xml>
 </semantics>
 <mo>+</mo>
 <mi>b</mi>
</math>

If the above is parsed by an HTML parser it produces a result equivalent to the following invalid input, where
the span element has caused all MathML elements to be prematurely closed. The remaining MathML elements
following the span are no longer contained within <math> so will be parsed as unknown HTML elements and
render incorrectly.

<math xmlns="http://www.w3.org/1998/Math/MathML">
 <semantics>
 <mi>a</mi>
 <annotation-xml>
 </annotation-xml>
 </semantics>
</math>
xxx
<mo xmlns="http://www.w3.org/1999/xhtml">+</mo>
<mi xmlns="http://www.w3.org/1999/xhtml">b</mi>

Note here that the HTML span element has caused all open MathML elements to be prematurely closed,
resulting in the following MathML elements being treated as unknown HTML elements as they are no longer
descendents of math. See Section 6.4.3 Mixing MathML and HTML for more details of the parsing of MathML
in HTML.

Any use of elements in other vocabularies (such as the OpenMath examples above) is considered invalid in
HTML. If validity is not a strict requirement it is possible to use such elements but they will be parsed as
elements on the MathML namespace. Documents SHOULD NOT use namespace prefixes and element names
containing colon (:) as the element nodes produced by the HTML parser with have local names containing
a colon, which can not be constructed by a namespace aware XML parser. Rather than use such foreign anno-
tations, when using an HTML parser it is better to encode the annotation using the existing vocabulary. For
example as shown in Chapter 4 Content Markup OpenMath may be encoded faithfuly as Strict Content MathML.
Similarly RDF annotations could be encoded using RDFa in text/html annotation or (say) N3 notation in
annotation rather than using RDF/XML encoding in an annotation-xml element.

5.2 Elements for Semantic Annotations

271

5.3 Combining Presentation and Content Markup

Presentation markup encodes the notational structure of an expression. Content markup encodes the functional
structure of an expression. In certain cases, a particular application of MathML may require a combination
of both presentation and content markup. This section describes specific constraints that govern the use of
presentation markup within content markup, and vice versa.

5.3.1 Presentation Markup in Content Markup

Presentation markup may be embedded within content markup so long as the resulting expression retains
an unambiguous function application structure. Specifically, presentation markup may only appear in content
markup in three ways:

1. within ci and cn token elements1.

2. within the csymbol element2.

3. within the semantics element3.

Any other presentation markup occurring within content markup is a MathML error. More detailed discussion of
these three cases follows:

Presentation markup within token elements.
The token elements ci and cn are permitted to contain any sequence of MathML characters (defined in
Chapter 7 Characters, Entities and Fonts) and/or presentation elements. Contiguous blocks of MathML
characters in ci or cn elements are treated as if wrapped in mi or mn elements, as appropriate, and the
resulting collection of presentation elements is rendered as if wrapped in an implicit mrow element.

Presentation markup within the csymbol element.
The csymbol element may contain either MathML characters interspersed with presentation markup, or
content markup. It is a MathML error for a csymbol element to contain both presentation and content ele-
ments. When the csymbol element contains character data and presentation markup, the same rendering
rules that apply to the token elements ci and cn should be used.

Presentation markup within the semantics element.
One of the main purposes of the semantics element is to provide a mechanism for incorporating
arbitrary MathML expressions into content markup in a semantically meaningful way. In particular, any
valid presentation expression can be embedded in a content expression by placing it as the first child
of a semantics element. The meaning of this wrapped expression should be indicated by one or more
annotation elements also contained in the semantics element.

5.3.2 Content Markup in Presentation Markup

Content markup may be embedded within presentation markup so long as the resulting expression has an
unambiguous rendering. That is, it must be possible, in principle, to produce a presentation markup fragment
for each content markup fragment that appears in the combined expression. The replacement of each content
markup fragment by its corresponding presentation markup should produce a well-formed presentation markup
expression. A presentation engine should then be able to process this presentation expression without reference
to the content markup bits included in the original expression.

In general, this constraint means that each embedded content expression must be well-formed, as a content
expression, and must be able to stand alone outside the context of any containing content markup element.
As a result, the following content elements may not appear as an immediate child of a presentation element:
annotation, annotation-xml, bvar, condition, degree, logbase, lowlimit, uplimit.

In addition, within presentation markup, content markup may not appear within presentation token elements.

5 Mixing Markup Languages for Mathematical Expressions

272

5.4 Parallel Markup

Some applications are able to use both presentation and content information. Parallel markup is a way to
combine two or more markup trees for the same mathematical expression. Parallel markup is achieved with the
semantics element. Parallel markup for an expression may appear on its own, or as part of a larger content or
presentation tree.

5.4.1 Top-level Parallel Markup

In many cases, the goal is to provide presentation markup and content markup for a mathematical expression as
a whole. A single semantics element may be used to pair two markup trees, where one child element provides
the presentation markup, and the other child element provides the content markup.

The following example encodes the Boolean arithmetic expression a + b c + d in this way.

<semantics>
 <mrow>
 <mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
 <mo>⁢<!--INVISIBLE TIMES--></mo>
 <mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>
 </mrow>
 <annotation-xml encoding="MathML-Content">
 <apply><and/>
 <apply><xor/><ci>a</ci> <ci>b</ci></apply>
 <apply><xor/><ci>c</ci> <ci>d</ci></apply>
 </apply>
 </annotation-xml>
</semantics>

Note that the above markup annotates the presentation markup as the first child element, with the content markup
as part of the annotation-xml element. An equivalent form could be given that annotates the content markup
as the first child element, with the presentation markup as part of the annotation-xml element.

5.4.2 Parallel Markup via Cross-References

To accommodate applications that must process sub-expressions of large objects, MathML supports cross-
references between the branches of a semantics element to identify corresponding sub-structures. These
cross-references are established by the use of the id and xref attributes within a semantics element. This
application of the id and xref attributes within a semantics element should be viewed as best practice to
enable a recipient to select arbitrary sub-expressions in each alternative branch of a semantics element. The id
and xref attributes may be placed on MathML elements of any type.

The following example demonstrates cross-references for the Boolean arithmetic expression a + b c + d .

<semantics>
 <mrow id="E">
 <mrow id="E.1">
 <mo id="E.1.1">(</mo>
 <mi id="E.1.2">a</mi>
 <mo id="E.1.3">+</mo>
 <mi id="E.1.4">b</mi>
 <mo id="E.1.5">)</mo>
 </mrow>
 <mo id="E.2">⁢<!--INVISIBLE TIMES--></mo>

5.4 Parallel Markup

273

 <mrow id="E.3">
 <mo id="E.3.1">(</mo>
 <mi id="E.3.2">c</mi>
 <mo id="E.3.3">+</mo>
 <mi id="E.3.4">d</mi>
 <mo id="E.3.5">)</mo>
 </mrow>
 </mrow>

 <annotation-xml encoding="MathML-Content">
 <apply xref="E">
 <and xref="E.2"/>
 <apply xref="E.1">
 <xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>
 </apply>
 <apply xref="E.3">
 <xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>
 </apply>
 </apply>
 </annotation-xml>
</semantics>

An id attribute and associated xref attributes that appear within the same semantics element establish the
cross-references between corresponding sub-expressions.

For parallel markup, all of the id attributes referenced by any xref attribute should be in the same branch
of an enclosing semantics element. This constraint guarantees that the cross-references do not create uninten-
tional cycles. This restriction does not exclude the use of id attributes within other branches of the enclosing
semantics element. It does, however, exclude references to these other id attributes originating from the same
semantics element.

There is no restriction on which branch of the semantics element may contain the destination id attributes. It
is up to the application to determine which branch to use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For example, a
presentation tree may contain elements, such as parentheses, that have no correspondents in the content tree. It is
therefore often useful to put the id attributes on the branch with the finest-grained node structure. Then all of the
other branches will have xref attributes to some subset of the id attributes.

In absence of other criteria, the first branch of the semantics element is a sensible choice to contain the id
attributes. Applications that add or remove annotations will then not have to re-assign these attributes as the
annotations change.

In general, the use of id and xref attributes allows a full correspondence between sub-expressions to be given
in text that is at most a constant factor larger than the original. The direction of the references should not be
taken to imply that sub-expression selection is intended to be permitted only on one child of the semantics
element. It is equally feasible to select a subtree in any branch and to recover the corresponding subtrees of the
other branches.

Parallel markup with cross-references may be used in any XML-encoded branch of the semantic annotations,
as shown by the following example where the Boolean expression of the previous section is annotated with
OpenMath markup that includes cross-references:

<semantics>
 <mrow id="EE">

5 Mixing Markup Languages for Mathematical Expressions

274

 <mrow id="EE.1">
 <mo id="EE.1.1">(</mo>
 <mi id="EE.1.2">a</mi>
 <mo id="EE.1.3">+</mo>
 <mi id="EE.1.4">b</mi>
 <mo id="EE.1.5">)</mo>
 </mrow>
 <mo id="EE.2">⁢<!--INVISIBLE TIMES--></mo>
 <mrow id="EE.3">
 <mo id="EE.3.1">(</mo>
 <mi id="EE.3.2">c</mi>
 <mo id="EE.3.3">+</mo>
 <mi id="EE.3.4">d</mi>
 <mo id="EE.3.5">)</mo>
 </mrow>
 </mrow>

 <annotation-xml encoding="MathML-Content">
 <apply xref="EE">
 <and xref="EE.2"/>
 <apply xref="EE.1">
 <xor xref="EE.1.3"/><ci xref="EE.1.2">a</ci><ci xref="EE.1.4">b</ci>
 </apply>
 <apply xref="EE.3">
 <xor xref="EE.3.3"/><ci xref="EE.3.2">c</ci><ci xref="EE.3.4">d</ci>
 </apply>
 </apply>
 </annotation-xml>

 <annotation-xml encoding="application/openmath+xml">
 <om:OMA xmlns:om="http://www.openmath.org/OpenMath" href="EE">
 <om:OMS name="and" cd="logic1" href="EE.2"/>

 <om:OMA href="EE.1">
 <om:OMS name="xor" cd="logic1" href="EE.1.3"/>
 <om:OMV name="a" href="EE.1.2"/>
 <om:OMV name="b" href="EE.1.4"/>
 </om:OMA>

 <om:OMA href="EE.3">
 <om:OMS name="xor" cd="logic1" href="EE.3.3"/>
 <om:OMV name="c" href="EE.3.2"/>
 <om:OMV name="d" href="EE.3.4"/>
 </om:OMA>
 </om:OMA>
 </annotation-xml>
</semantics>

Here OMA, OMS and OMV are elements defined in the OpenMath standard for representing application, symbol, and
variable, respectively. The references from the OpenMath annotation are given by the href attributes. As noted
above, the use of namespaces other than MathML, SVG or HTML within annotation-xml is not considered
valid in the HTML syntax. Use of colons and namespace-prefixed element names should be avoided as the
HTML parser will generate nodes with local name om:OMA (for example), and such nodes can not be constructed
by a namespace-aware XML parser.

5.4 Parallel Markup

275

6 Interactions with the Host Environment

6.1 Introduction

To be effective, MathML must work well with a wide variety of renderers, processors, translators and editors.
This chapter raises some of the interface issues involved in generating and rendering MathML. Since MathML
exists primarily to encode mathematics in Web documents, perhaps the most important interface issues relate to
embedding MathML in [HTML5], and [XHTML], and in any newer HTML when it appears.

There are three kinds of interface issues that arise in embedding MathML in other XML documents. First,
MathML markup must be recognized as valid embedded XML content, and not as an error. This issue could be
seen primarily as a question of managing namespaces in XML [Namespaces].

Second, in the case of HTML/XHTML, MathML rendering must be integrated with browser software. Some
browsers already implement MathML rendering natively, and one can expect more browsers will do so in the
future. At the same time, other browsers have developed infrastructure to facilitate the rendering of MathML
and other embedded XML content by third-party software or other built-in technology. Examples of this built-
in technology are the sophisticated CSS rendering engines now available, and the powerful implementations
of JavaScript/ECMAScript that are becoming common. Using these browser-specific mechanisms generally
requires additional interface markup of some sort to activate them. In the case of CSS, there is a special restricted
form of MathML3 [MathMLforCSS] that is tailored for use with CSS rendering engines that support CSS 2.1
[CSS21]. This restricted profile of MathML3 does not offer the full expressiveness of MathML3, but it provides
a portable simpler form that can be rendered acceptably on the screen by modern CSS engines.

Third, other tools for generating and processing MathML must be able to communicate. A number of MathML
tools have been or are being developed, including editors, translators, computer algebra systems, and other
scientific software. However, since MathML expressions tend to be lengthy, and prone to error when entered
by hand, special emphasis must be made to ensure that MathML can easily be generated by user-friendly
conversion and authoring tools, and that these tools work together in a dependable, platform-independent, and
vendor-independent way.

This chapter applies to both content and presentation markup, and describes a particular processing model for the
semantics, annotation and annotation-xml elements described in Section 5.1 Annotation Framework.

6.2 Invoking MathML Processors

6.2.1 Recognizing MathML in XML

Within an XML document supporting namespaces [XML], [Namespaces], the preferred method to recognize
MathML markup is by the identification of the math element in the MathML namespace by the use of the
MathML namespace URI http://www.w3.org/1998/Math/MathML.

The MathML namespace URI is the recommended method to embed MathML within [XHTML] documents.
However, some user-agents may require supplementary information to be available to allow them to invoke
specific extensions to process the MathML markup.

Markup-language specifications that wish to embed MathML may require special conditions to recognize
MathML markup that are independent of this recommendation. The conditions should be similar to those
expressed in this recommendation, and the local names of the MathML elements should remain the same as
those defined in this recommendation.

276

6.2.2 Recognizing MathML in HTML

HTML does not allow arbitrary namespaces, but has built in knowledge of the MathML namespace. The math
element and its descendants will be placed in the http://www.w3.org/1998/Math/MathML namespace by
the HTML parser, and will appear to applications as if the input had been XHTML with the namespace declared
as in the previous section. See Section 6.4.3 Mixing MathML and HTML for detailed rules of the HTML parser's
handling of MathML.

6.2.3 Resource Types for MathML Documents

Although rendering MathML expressions often takes place in a Web browser, other MathML processing func-
tions take place more naturally in other applications. Particularly common tasks include opening a MathML
expression in an equation editor or computer algebra system. It is important therefore to specify the encoding
names by which MathML fragments should be identified.

Outside of those environments where XML namespaces are recognized, media types [RFC2045], [RFC2046]
should be used if possible to ensure the invocation of a MathML processor. For those environments where media
types are not appropriate, such as clipboard formats on some platforms, the encoding names described in the next
section should be used.

6.2.4 Names of MathML Encodings

MathML contains two distinct vocabularies: one for encoding visual presentation, defined in Chapter 3 Presen-
tation Markup, and one for encoding computational structure, defined in Chapter 4 Content Markup. Some
MathML applications may import and export only one of these two vocabularies, while others may produce and
consume each in a different way, and still others may process both without any distinction between the two. The
following encoding names may be used to distinguish between content and presentation MathML markup when
needed.

• MathML-Presentation: The instance contains presentation MathML markup only.•

◦ Media Type: application/mathml-presentation+xml◦

◦ Windows Clipboard Flavor: MathML Presentation◦

◦ Universal Type Identifier: public.mathml.presentation◦

• MathML-Content: The instance contains content MathML markup only.•

◦ Media Type: application/mathml-content+xml◦

◦ Windows Clipboard Flavor: MathML Content◦

◦ Universal Type Identifier: public.mathml.content◦

• MathML (generic): The instance may contain presentation MathML markup, content MathML markup, or •
a mixture of the two.

◦ File name extension: .mml◦

◦ Media Type: application/mathml+xml◦

◦ Windows Clipboard Flavor: MathML◦

◦ Universal Type Identifier: public.mathml◦

See Appendix B Media Types Registrations for more details about each of these encoding names.

MathML 2 specified the predefined encoding values MathML, MathML-Content, and MathML-Presentation
for the encoding attribute on the annotation-xml element. These values may be used as an alternative
to the media type for backward compatibility. See Section 5.1.3 Alternate representations and Section 5.1.4

6.2 Invoking MathML Processors

277

Content equivalents for details. Moreover, MathML 1.0 suggested the media-type text/mathml, which has
been superseded by [RFC3023].

6.3 Transferring MathML

MathML expressions are often exchanged between applications using the familiar copy-and-paste or drag-and-
drop paradigms and are often stored in files or exchanged over the HTTP protocol. This section provides
recommended ways to process MathML during these transfers.

The transfers of MathML fragments described in this section occur between the contexts of two applications
by making the MathML data available in several flavors, often called media types, clipboard formats, or data fla-
vors. These flavors are typically ordered by preference by the producing application, and are typically examined
in preference order by the consuming application. The copy-and-paste paradigm allows an application to place
content in a central clipboard, with one data stream per clipboard format; a consuming application negotiates
by choosing to read the data of the format it prefers. The drag-and-drop paradigm allows an application to offer
content by declaring the available formats; a potential recipient accepts or rejects a drop based on the list of
available formats, and the drop action allows the receiving application to request the delivery of the data in one
of the indicated formats. An HTTP GET transfer, as in [HTTP11], allows a client to submit a list of acceptable
media types; the server then delivers the data using the one of the indicated media types. An HTTP POST
transfer, as in [HTTP11], allows a client to submit data labelled with a media type that is acceptable to the server
application.

Current desktop platforms offer copy-and-paste and drag-and-drop transfers using similar architectures, but with
varying naming schemes depending on the platform. HTTP transfers are all based on media types. This section
specifies what transfer types applications should provide, how they should be named, and how they should
handle the special semantics, annotation, and annotation-xml elements.

To summarize the three negotiation mechanisms, the following paragraphs will describe transfer flavors, each
with a name (a character string) and content (a stream of binary data), which are offered, accepted, and/or
exported.

6.3.1 Basic Transfer Flavor Names and Contents

The names listed in Section 6.2.4 Names of MathML Encodings are the exact strings that should be used to
identify the transfer flavors that correspond to the MathML encodings. On operating systems that allow such,
an application should register their support for these flavor names (e.g. on Windows, a call to RegisterClipboard-
Format, or, on the Macintosh platform, declaration of support for the universal type identifier in the application
descriptor).

When transferring MathML, an application MUST ensure the content of the data transfer is a well-formed XML
instance of a MathML document type. Specifically:

1. The instance MAY begin with an XML declaration, e.g. <?xml version="1.0">1.

2. The instance MUST contain exactly one root math element.2.

3. The instance MUST declare the MathML namespace on the root math element.3.

4. The instance MAY use a schemaLocation attribute on the math element to indicate the location of the 4.
MathML schema that describes the MathML document type to which the instance conforms. The presence
of the schemaLocation attribute does not require a consumer of the MathML instance to obtain or use
the referenced schema.

5. The instance SHOULD use numeric character references (e.g. α) rather than character entity 5.
names (e.g. α) for greater interoperability.

6 Interactions with the Host Environment

278

http://www.w3.org/TR/2004/REC-xml-20040204/#dt-wellformed

6. The instance MUST specify the character encoding, if it uses an encoding other than UTF-8, either in the 6.
XML declaration, or by the use of a byte-order mark (BOM) for UTF-16-encoded data.

6.3.2 Recommended Behaviors when Transferring

An application that transfers MathML markup SHOULD adhere to the following conventions:

1. An application that supports pure presentation markup and/or pure content markup SHOULD offer as 1.
many of these flavors as it has available.

2. An application that only exports one MathML flavor SHOULD name it MathML if it is unable to determine 2.
a more specific flavor.

3. If an application is able to determine a more specific flavor, it SHOULD offer both the generic and spe-3.
cific transfer flavors, but it SHOULD only deliver the specific flavor if it knows that the recipient supports
it. For an HTTP GET transfer, for example, the specific transfer types for content and presentation markup
should only be returned if they are included in the HTTP Accept header sent by the client.

4. An application that exports the two specific transfer flavors SHOULD export both the content and presen-4.
tation transfer flavors, as well as the generic flavor, which SHOULD combine the other two flavors using a
top-level MathML semantics element (see Section 5.4.1 Top-level Parallel Markup).

5. When an application exports a MathML fragment whose only child of the root element is a semantics 5.
element, it SHOULD offer, after the above flavors, a transfer flavor for each annotation or
annotation-xml element, provided the transfer flavor can be recognized and named based on the
encoding attribute value, and provided the annotation key is (the default) alternate-representation. The
transfer content for each annotation should contain the character data in the specified encoding (for an
annotation element), or a well-formed XML fragment (for an annotation-xml element), or the data
that results by requesting the URL given by the src attribute (for an annotation reference).

6. As a final fallback, an application MAY export a version of the data in a plain-text flavor (such as 6.
text/plain, CF_UNICODETEXT, UnicodeText, or NSStringPboardType). When an application has
multiple versions of an expression available, it may choose the version to export as text at its discretion.
Since some older MathML processors expect MathML instances transferred as plain text to begin with
a math element, the text version SHOULD generally omit the XML declaration, DOCTYPE declaration,
and other XML prolog material that would appear before the math element. The Unicode text version of
the data SHOULD always be the last flavor exported, following the principle that exported flavors should
be ordered with the most specific flavor first and the least specific flavor last.

6.3.3 Discussion

To determine whether a MathML instance is pure content markup or pure presentation markup, the math,
semantics, annotation and annotation-xml elements should be regarded as belonging to both the presen-
tation and content markup vocabularies. The math element is treated in this way because it is required as the
root element in any MathML transfer. The semantics element and its child annotation elements comprise
an arbitrary annotation mechanism within MathML, and are not tied to either presentation or content markup.
Consequently, an application that consumes MathML should always process these four elements, even if it only
implements one of the two vocabularies.

It is worth noting that the above recommendations allow agents that produce MathML to provide binary data
for the clipboard, for example in an image or other application-specific format. The sole method to do so is to
reference the binary data using the src attribute of an annotation, since XML character data does not allow for
the transfer of arbitrary byte-stream data.

While the above recommendations are intended to improve interoperability between MathML-aware applications
that use these transfer paradigms, it should be noted that they do not guarantee interoperability. For example,

6.3 Transferring MathML

279

http://www.openmath.org/cd/mathmlkeys.xhtml#alternate-representation

references to external resources (e.g. stylesheets, etc.) in MathML data can cause interoperability problems if
the consumer of the data is unable to locate them, as can happen when cutting and pasting HTML or other
data types. An application that makes use of references to external resources is encouraged to make users aware
of potential problems and provide alternate ways to obtain the referenced resources. In general, consumers
of MathML data that contains references they cannot resolve or do not understand should ignore the external
references.

6.3.4 Examples

6.3.4.1 Example 1

An e-Learning application has a database of quiz questions, some of which contain MathML. The MathML
comes from multiple sources, and the e-Learning application merely passes the data on for display, but does not
have sophisticated MathML analysis capabilities. Consequently, the application is not aware whether a given
MathML instance is pure presentation or pure content markup, nor does it know whether the instance is valid
with respect to a particular version of the MathML schema. It therefore places the following data formats on the
clipboard:

Flavor Name Flavor Content

MathML $...$

Unicode Text $...$

6.3.4.2 Example 2

An equation editor on the Windows platform is able to generate pure presentation markup, valid with respect to
MathML 3. Consequently, it exports the following flavors:

Flavor Name Flavor Content

MathML Presentation $...$

Tiff (a rendering sample)
Unicode Text $...$

6.3.4.3 Example 3

A schema-based content management system on the Mac OS X platform contains multiple MathML representa-
tions of a collection of mathematical expressions, including mixed markup from authors, pure content markup
for interfacing to symbolic computation engines, and pure presentation markup for print publication. Due to
the system's use of schemata, markup is stored with a namespace prefix. The system therefore can transfer the
following data:

Flavor Name Flavor Content

public.mathml.presentation <math xmlns="http://www.w3.org/1998/Math/MathML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
 xsi:schemaLocation=
 "http://www.w3.org/Math/XMLSchema/mathml3/

mathml3.xsd">
 <mrow>
 ...
 <mrow>
</math>

6 Interactions with the Host Environment

280

Flavor Name Flavor Content

public.mathml.content <math xmlns="http://www.w3.org/1998/Math/MathML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
 xsi:schemaLocation=
 "http://www.w3.org/Math/XMLSchema/mathml3/

mathml3.xsd">
 <apply>
 ...
 <apply>
</math>

public.mathml <math xmlns="http://www.w3.org/1998/Math/MathML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
 xsi:schemaLocation=
 "http://www.w3.org/Math/XMLSchema/mathml3/

mathml3.xsd">
 <mrow>
 <apply>
 ... content markup within presentation markup ...
 </apply>
 ...
 </mrow>
</math>

public.plain-text.tex {x \over x-1}

public.plain-text <math xmlns="http://www.w3.org/1998/Math/MathML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
 xsi:schemaLocation=
 "http://www.w3.org/Math/XMLSchema/mathml3/

mathml3.xsd">
 <mrow>
 ...
 <mrow>
</math>

6.3.4.4 Example 4

A similar content management system is web-based and delivers MathML representations of mathematical
expressions. The system is able to produce MathML-Presentation, MathML-Content, TeX and pictures in TIFF
format. In web-pages being browsed, it could produce a MathML fragment such as the following:

<math xmlns="http://www.w3.org/1998/Math/MathML">
 <semantics>
 <mrow>...</mrow>
 <annotation-xml encoding="MathML-Content">...</annotation-xml>
 <annotation encoding="TeX">{1 \over x}</annotation>
 <annotation encoding="image/tiff" src="formula3848.tiff"/>
 </semantics>
</math>

A web-browser on the Windows platform that receives such a fragment and tries to export it as part of a
drag-and-drop action, can offer the following flavors:

6.3 Transferring MathML

281

Flavor Name Flavor Content

MathML Presentation <math xmlns="http://www.w3.org/1998/Math/MathML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.w3.org/Math/XMLSchema/mathml3/mathml3.

xsd">
 <mrow>
 ...
 <mrow>
</math>

MathML Content <math xmlns="http://www.w3.org/1998/Math/MathML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.w3.org/Math/XMLSchema/mathml3/mathml3.

xsd">
 <apply>
 ...
 <apply>
</math>

MathML <math xmlns="http://www.w3.org/1998/Math/MathML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.w3.org/Math/XMLSchema/mathml3/mathml3.

xsd">
 <mrow>
 <apply>
 ... content markup within presentation markup ...
 </apply>
 ...
 </mrow>
</math>

TeX {x \over x-1}

CF_TIFF (the content of the picture file, requested from formula3848.tiff)
CF_UNICODETEXT <math xmlns="http://www.w3.org/1998/Math/MathML"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.w3.org/Math/XMLSchema/mathml3/mathml3.

xsd">
 <mrow>
 ...
 <mrow>
</math>

6.4 Combining MathML and Other Formats

MathML is usually used in combination with other markup languages. The most typical case is perhaps the use
of MathML within a document-level markup language, such as HTML or DocBook. It is also common that other
object-level markup languages are also included in a compound document format, such as MathML and SVG in
HTML5. Other common use cases include mixing other markup within MathML. For example, an authoring tool
might insert an element representing a cursor position or other state information within MathML markup, so that
an author can pick up editing where it was broken off.

Most document markup languages have some concept of an inline equation, (or graphic, object, etc.) so there is a
typically a natural way to incorporate MathML instances into the content model. However, in the other direction,

6 Interactions with the Host Environment

282

embedding of markup within MathML is not so clear cut, since in many MathML elements, the role of child
elements is defined by position. For example, the first child of an apply must be an operator, and the second
child of an mfrac is the denominator. The proper behavior when foreign markup appears in such contexts is
problematic. Even when such behavior can be defined in a particular context, it presents an implementation
challenge for generic MathML processors.

For this reason, the default MathML schema does not allow foreign markup elements to be included within
MathML instances.

In the standard schema, elements from other namespaces are not allowed, but attributes from other namespaces
are permitted. MathML processors that encounter unknown XML markup should behave as follows:

1. An attribute from a non-MathML namespace should be silently ignored.1.

2. An element from a non-MathML namespace should be treated as an error, except in an annotation-xml 2.
element. If the element is a child of a presentation element, it should be handled as described in Section
3.3.5 Error Message <merror>. If the element is a child of a content element, it should be handled as
described in Section 4.2.9 Error Markup <cerror>.

For example, if the second child of an mfrac element is an unknown element, the fraction should be rendered
with a denominator that indicates the error.

When designing a compound document format in which MathML is included in a larger document type, the
designer may extend the content model of MathML to allow additional elements. For example, a common
extension is to extend the MathML schema such that elements from non-MathML namespaces are allowed in
token elements, but not in other elements. MathML processors that encounter unknown markup should behave as
follows:

1. An unrecognized XML attribute should be silently ignored.1.

2. An unrecognized element in a MathML token element should be silently ignored.2.

3. An element from a non-MathML namespace should be treated as an error, except in an annotation-xml 3.
element. If the element is a child of a presentation element, it should be handled as described in Section
3.3.5 Error Message <merror>. If the element is a child of a content element, it should be handled as
described in Section 4.2.9 Error Markup <cerror>.

Extending the schema in this way is easily achieved using the Relax NG schema described in Appendix A
Parsing MathML, it may be as simple as including the MathML schema whilst overriding the content model of
mtext:

default namespace m = "http://www.w3.org/1998/Math/MathML"

include "mathml3.rnc" {
mtext = element mtext {mtext.attributes, (token.content|anyElement)*}
}

The definition given here would allow any well formed XML that is not in the MathML namespace as a child
of mtext. In practice this may be too lax. For example, an XHTML+MathML Schema may just want to allow
inline XHTML elements as additional children of mtext. This may be achieved by replacing anyElement
by a suitable production from the schema for the host document type, see Section 6.4.1 Mixing MathML and
XHTML.

Considerations about mixing markup vocabularies in compound documents arise when a compound document
type is first designed. But once the document type is fixed, it is not generally practical for specific software tools
to further modify the content model to suit their needs. However, it is still frequently the case that such tools

6.4 Combining MathML and Other Formats

283

may need to store additional information within a MathML instance. Since MathML is most often generated by
authoring tools, a particularly common and important case is where an authoring tool needs to store information
about its internal state along with a MathML expression, so an author can resume editing from a previous state.
For example, placeholders may be used to indicate incomplete parts of an expression, or a insertion point within
an expression may need to be stored.

An application that needs to persist private data within a MathML expression should generally attempt to do
so without altering the underlying content model, even in situations where it is feasible to do so. To support
this requirement, regardless of what may be allowed by the content model of a particular compound document
format, MathML permits the storage of private data via the following strategies:

1. In a format that permits the use of XML Namespaces, for small amounts of data, attributes from other 1.
namespaces are allowed on all MathML elements.

2. For larger amounts of data, applications may use the semantics element, as described in Section 5.1 2.
Annotation Framework.

3. For authoring tools and other applications that need to associate particular actions with presentation 3.
MathML subtrees, e.g. to mark an incomplete expression to be filled in by an author, the maction element
may be used, as described in Section 3.7.1 Bind Action to Sub-Expression <maction>.

6.4.1 Mixing MathML and XHTML

To fully integrate MathML into XHTML, it should be possible not only to embed MathML in XHTML, but also
to embed XHTML in MathML. The schema used for the W3C HTML5 validator extends mtext to allow all
inline (phrasing) HTML elements (including svg) to be used within the content of mtext. See the example in
Section 3.2.2.2 Embedding HTML in MathML. As noted above, MathML fragments using XHTML elements
within mtext will not be valid MathML if extracted from the document and used in isolation. Editing tools may
offer support for removing any HTML markup from within mtext and replacing it by a text alternative.

In most cases, XHTML elements (headings, paragraphs, lists, etc.) either do not apply in mathematical contexts,
or MathML already provides equivalent or improved functionality specifically tailored to mathematical content
(tables, mathematics style changes, etc.).

Consult the W3C Math Working Group home page for compatibility and implementation suggestions for current
browsers and other MathML-aware tools.

6.4.2 Mixing MathML and non-XML contexts

There may be non-XML vocabularies which require markup for mathematical expressions, where it makes
sense to reference this specification. HTML is an important example discussed in the next section, however
other examples exist. It is possible to use a TeX-like syntax such as \frac{a}{b} rather than explicitly using
<mfrac> and <mi>. If a system parses a specified syntax and produces a tree that may be validated against the
MathML schema then it may be viewed as as a MathML application. Note however that documents using such
a system are not valid MathML. Implementations of such a syntax should, if possible, offer a facility to output
any mathematical expressions as MathML in the XML syntax defined here. Such an application would then be a
MathML-output-conformant processor as described in Section 2.3.1 MathML Conformance.

6.4.3 Mixing MathML and HTML

An important example of a non-XML based system is defined in [HTML5]. When considering MathML in
HTML there are two separate issues to consider. Firstly the schema is extended to allow HTML in mtext as
described above in the context of XHTML. Secondly an HTML parser is used rather than an XML parser. The
parsing of MathML by an HTML parser is normatively defined in [HTML5]. The description there is aimed at

6 Interactions with the Host Environment

284

http://www.w3.org/Math/

parser implementers and written in terms of the state transitions of the parser as it parses each character of the
input. The non-normative description below aims to give a higher level description and examples.

XML parsing is completely regular, any XML document may be parsed without reference to the particular
vocabulary being used. HTML parsing differs in that it is a custom parser for the HTML vocabulary with spe-
cific rules for each element. Similarly to XML though, the HTML parser distinguishes parsing from validation;
some input, even if it renders correctly, is classed as a parse error which may be reported by validators (but
typically is not reported by rendering systems).

The main differences that affect MathML usage may be summarized as:

• Attribute values in most cases do not need to be quoted: <mfenced open=(close=)> would parse •
correctly.

• End tags may in many cases be omitted.•

• HTML does not support namespaces other than the three built in ones for HTML, MathML •
and SVG, and does not support namespace prefixes. Thus you can not use a prefix form like
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> and while you may use
<math xmlns="http://www.w3.org/1998/Math/MathML">, the namespace declaration is essen-
tially ignored and the input is treated as <math>. In either case the math element and its descendants
are placed in the MathML namespace. As noted in Chapter 5 Mixing Markup Languages for Mathematical
Expressions the lack of namespace support limits some of the possibilities for annotating MathML with
markup from other vocabularies when used in HTML.

• Unlike the XML parser, the HTML parser is defined to accept any input string and produce a defined •
result (which may be classified as non-conforming. The extreme example <math></<><z =5> for exam-
ple would be flagged as a parse error by validators but would return a tree corresponding to a math
element containing a comment < and an element z with an attribute that could not be expressed in XML
with name =5 and value "".

• Unless inside the token elements <mtext>, <mo>, <mn>, <mi>, <ms>, or inside an <annotation-xml> •
with encoding attribute "text/html" or "annotation/xhtml+xml", the presence of an HTML element will
terminate the math expression by closing all open MathML elements, so that the HTML element is
interpreted as being in the outer HTML context. Any following MathML elements are then not contained
in <math> so will be parsed as invalid HTML elements and not rendered as MathML. See for example the
example given in Section 5.2.3.3 Using annotation-xml in HTML documents.

In the interests of compatibility with existing MathML applications authors and editing systems should use
MathML fragments that are well formed XML, even when embedded in an HTML document. Also as noted
above, although applications accepting MathML in HTML documents must accept MathML making use of these
HTML parser features, they should offer a way to export MathML in a portable XML syntax.

6.4.4 Linking

In MathML 3, an element is designated as a link by the presence of the href attribute. MathML has no element
that corresponds to the HTML/XHTML anchor element a.

MathML allows the href attribute on all elements. However, most user agents have no way to implement nested
links or links on elements with no visible rendering; such links may have no effect.

The list of presentation markup elements that do not ordinarily have a visual rendering, and thus should not be
used as linking elements, is given in the table below.

MathML elements that should not be linking elements

mprescripts none

6.4 Combining MathML and Other Formats

285

MathML elements that should not be linking elements

malignmark maligngroup

For compound document formats that support linking mechanisms, the id attribute should be used to specify the
location for a link into a MathML expression. The id attribute is allowed on all MathML elements, and its value
must be unique within a document, making it ideal for this purpose.

Note that MathML 2 has no direct support for linking; it refers to the W3C Recommendation "XML Linking
Language" [XLink] in defining links in compound document contexts by using an xlink:href attribute. As
mentioned above, MathML 3 adds an href attribute for linking so that xlink:href is no longer needed.
However, xlink:href is still allowed because MathML permits the use of attributes from non-MathML
namespaces. It is recommended that new compound document formats use the MathML 3 href attribute for
linking. When user agents encounter MathML elements with both href and xlink:href attributes, the href
attribute should take precedence. To support backward compatibility, user agents that implement XML Linking
in compound documents containing MathML 2 should continue to support the use of the xlink:href attribute
in addition to supporting the href attribute.

6.4.5 MathML and Graphical Markup

Apart from the introduction of new glyphs, many of the situations where one might be inclined to use an image
amount to displaying labeled diagrams. For example, knot diagrams, Venn diagrams, Dynkin diagrams, Feynman
diagrams and commutative diagrams all fall into this category. As such, their content would be better encoded
via some combination of structured graphics and MathML markup. However, at the time of this writing, it is
beyond the scope of the W3C Math Activity to define a markup language to encode such a general concept as
"labeled diagrams." (See http://www.w3.org/Math for current W3C activity in mathematics and http://www.w3.
org/Graphics for the W3C graphics activity.)

One mechanism for embedding additional graphical content is via the semantics element, as in the following
example:

<semantics>
 <apply>
 <intersect/>
 <ci>A</ci>
 <ci>B</ci>
 </apply>
 <annotation-xml encoding="image/svg+xml">
 <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 290 180">
 <clipPath id="a">
 <circle cy="90" cx="100" r="60"/>
 </clipPath>
 <circle fill="#AAAAAA" cy="90" cx="190"
 r="60" style="clip-path:url(#a)"/>
 <circle stroke="black" fill="none" cy="90" cx="100" r="60"/>
 <circle stroke="black" fill="none" cy="90" cx="190" r="60"/>
 </svg>
 </annotation-xml>
 <annotation-xml encoding="application/xhtml+xml">
 <img xmlns="http://www.w3.org/1999/xhtml"
 src="intersect.gif" alt="A intersect B"/>
 </annotation-xml>
</semantics>

Here, the annotation-xml elements are used to indicate alternative representations of the MathML-Content
depiction of the intersection of two sets. The first one is in the "Scalable Vector Graphics" format [SVG1.1] (see

6 Interactions with the Host Environment

286

http://www.w3.org/Math/
http://www.w3.org/Graphics/

[XHTML-MathML-SVG] for the definition of an XHTML profile integrating MathML and SVG), the second
one uses the XHTML img element embedded as an XHTML fragment. In this situation, a MathML processor
can use any of these representations for display, perhaps producing a graphical format such as the image below.

Note that the semantics representation of this example is given in MathML-Content markup, as the first child of
the semantics element. In this regard, it is the representation most analogous to the alt attribute of the img
element in XHTML, and would likely be the best choice for non-visual rendering.

6.5 Using CSS with MathML

When MathML is rendered in an environment that supports CSS [CSS21], controlling mathematics style proper-
ties with a CSS style sheet is desirable, but not as simple as it might first appear, because the formatting of
MathML layout schemata is quite different from the CSS visual formatting model and many of the style param-
eters that affect mathematics layout have no direct textual analogs. Even in cases where there are analogous
properties, the sensible values for these properties may not correspond. Because of this difference, applications
that support MathML natively may choose to restrict the CSS properties applicable to MathML layout schemata
to those properties that do not affect layout.

Generally speaking, the model for CSS interaction with the math style attributes runs as follows. A CSS style
sheet might provide a style rule such as:

math *.[mathsize="small"] {
 font-size: 80%
}

This rule sets the CSS font-size property for all children of the math element that have the mathsize attribute
set to small. A MathML renderer would then query the style engine for the CSS environment, and use the
values returned as input to its own layout algorithms. MathML does not specify the mechanism by which style
information is inherited from the environment. However, some suggested rendering rules for the interaction
between properties of the ambient style environment and MathML-specific rendering rules are discussed in
Section 3.2.2 Mathematics style attributes common to token elements, and more generally throughout Chapter 3
Presentation Markup.

It should be stressed, however, that some caution is required in writing CSS stylesheets for MathML. Because
changing typographic properties of mathematics symbols can change the meaning of an equation, stylesheets
should be written in a way such that changes to document-wide typographic styles do not affect embedded
MathML expressions.

Another pitfall to be avoided is using CSS to provide typographic style information necessary to the proper
understanding of an expression. Expressions dependent on CSS for meaning will not be portable to non-CSS
environments such as computer algebra systems. By using the logical values of the new MathML 3.0 mathemat-
ics style attributes as selectors for CSS rules, it can be assured that style information necessary to the sense of an
expression is encoded directly in the MathML.

MathML 3.0 does not specify how a user agent should process style information, because there are many
non-CSS MathML environments, and because different users agents and renderers have widely varying degrees
of access to CSS information.

6.5 Using CSS with MathML

287

6.5.1 Order of processing attributes versus style sheets

CSS or analogous style sheets can specify changes to rendering properties of selected MathML elements. Since
rendering properties can also be changed by attributes on an element, or be changed automatically by the
renderer, it is necessary to specify the order in which changes requested by various sources should occur. The
order is defined by [CSS21] cascading order taking into account precedence of non-CSS presentational hints.

6 Interactions with the Host Environment

288

7 Characters, Entities and Fonts

7.1 Introduction

Notation and symbols have proved very important for mathematics. Mathematics has grown in part because its
notation continually changes toward being succinct and suggestive. Many new signs have been developed for
use in mathematical notation, and many have been adopted that were originally introduced elsewhere.The result
is that mathematics makes use of a very large collection of symbols. It is difficult to write mathematics fluently
if these characters are not available for use. It is difficult to read mathematics if corresponding glyphs are not
available for presentation on specific display devices.

The W3C Math Working Group therefore took on the job of specifying part of the mechanism needed to proceed
from notation to final presentation, and has collaborated with the Unicode Technical Committee (UTC) and the
STIX Fonts Project in undertaking specification of the rest.

This chapter contains discussion of characters for use within MathML, recommendations for their use, and warn-
ings concerning the correct form of the corresponding code points given in the Universal Multiple-Octet Coded
Character Set (UCS) [ISO10646] as codified in Unicode [Unicode]. For simplicity we refer to this character set
by the short name Unicode. Unless otherwise stated, the mappings discussed in this chapter and elsewhere in
the MathML 3.0 recommendation are based on Unicode 5.2. Conformant MathML processors (see Section 2.3
Conformance) are free to use characters defined in Unicode 5.2 or later.

While a long process of review and adoption by UTC and ISO/IEC of the characters of special interest to
mathematics and MathML is now complete, more characters may be added in the future. For the latest character
tables and font information, see the [Entities] and the Unicode Home Page, notably Unicode Work in Progress
and Unicode Technical Report #25 “Unicode Support for Mathematics”.

A MathML token element (see Section 3.2 Token Elements, Section 4.2.1 Numbers <cn>, Section 4.2.2 Content
Identifiers <ci>, Section 4.2.3 Content Symbols <csymbol>) takes as content a sequence of MathML characters
or mglyph elements. The latter are used to represent characters that do not have a Unicode encoding, as descri-
bed in Section 3.2.1.2 Using images to represent symbols <mglyph/>. The need for mglyph should be rare
because Unicode 3.1 provided approximately one thousand alphabetic characters for mathematics, and Unicode
3.2 added over 900 more special mathematical symbols.

7.2 Unicode Character Data

Any character allowed by XML may be used in MathML. More precisely, the legal Unicode characters have
the hexadecimal code numbers 09 (tab = U+0009), 0A (line feed = U+000A), 0D (carriage return = U+000D),
20-D7FF (U+0020..U+D7FF), E000-FFFD (U+E000..U+FFFD), and 10000-10FFFF (U+10000..U+10FFFF).
The exclusions above code number D7FF are of the blocks used in surrogate pairs, and the two characters
guaranteed not to be Unicode characters at all. U+FFFE is excluded to allow determination of byte order in
certain encodings.

There are essentially three different ways of encoding character data in an XML document.

• Using characters directly: For example, the 'é' (character U+00E9 [LATIN SMALL LETTER E WITH •
ACUTE]) may have been inserted. This option is only useful if the character encoding specified for the
XML document includes the character intended. Note that if the document is, for example, encoded in
Latin-1 (ISO-8859-1) then only the characters in that encoding are available directly; for instance character
U+00E9 (eacute) is, but character U+03B1 (alpha) is not.

289

http://www.unicode.org/
http://www.stixfonts.org/
http://www.unicode.org/
http://www.unicode.org/unicode/alloc/Pipeline.html
http://www.unicode.org/reports/tr25/tr25-8.html

• Using numeric XML character references: For example, 'é' may be represented as é (decimal) or •
é (hex), or é (decimal) or é. Note that the numbers in the character references
always refer to the Unicode encoding (and not to the character encoding used in the XML file). By using
character references it is always possible to access the entire Unicode range.

• Using entity references: The MathML DTD defines internal entities that expand to character data. Thus •
for example the entity reference é may be used rather than the character reference é. An
XML fragment that uses an entity reference which is not defined in a DTD is not well-formed; therefore
it will be rejected by an XML parser. For this reason every fragment using entity references must use
a DOCTYPE declaration which specifies the MathML DTD, or a DTD that at least declares any entity
reference used in the MathML instance. The need to use a DOCTYPE complicates inclusion of MathML
in some documents. However, entity references can be useful for small illustrative examples.

7.3 Entity Declarations

Earlier versions of this MathML specification included detailed listings of the entity definitions to be used with
the MathML DTD. These entity definitions are of more general use, and have now been separated into an
ancillary document, XML Entity Definitions for Characters [Entities]. The tables there list the entity names and
the corresponding Unicode character references. That document describes several entity sets; not all of them are
used in the MathML DTD. The MathML DTD references the combined HTML MathML entity set defined in
[Entities].

7.4 Special Characters Not in Unicode

For special purposes, one may need a symbol which does not have a Unicode representation. In these cases one
may use the mglyph element for direct access to a glyph as an image, or (in some systems) from a font that
uses a non-Unicode encoding. All MathML token elements accept characters in their content and also accept an
mglyph there. Beware, however, that use of mglyph to access a font is deprecated and the mechanism may not
work in all systems. The mglyph element should always supply a useful alternative representation in its alt
attribute.

7.5 Mathematical Alphanumeric Symbols

In mathematical and scientific writing, single letters often denote variables and constants in a given context. The
increasing complexity of science has led to the use of certain common alphabet and font variations to provide
enough special symbols of this letter-like type. These denotations are generally not letters that may be used
to make up words with recognized meanings, but individual carriers of semantics themselves. Writing a string
of such symbols is usually interpreted in terms of some composition law, for instance, multiplication. Many
letter-like symbols may be quickly interpreted as of a certain mathematical type by specialists in a given area: for
instance, bold symbols, whether based on Latin or Greek letters, as vectors in physics or engineering, or Fraktur
symbols as Lie algebras in part of pure mathematics.

The additional Mathematical Alphanumeric Symbols provided in Unicode 3.1 have code points in the range
U+1D400 to U+1D7FF in Plane 1, that is, in the first plane with Unicode values higher than 216. This plane of
characters is also known as the Secondary Multilingual Plane (SMP), in contrast to the Basic Multilingual Plane
(BMP) which was originally the entire extent of Unicode. Support for Plane 1 characters in currently deployed
software is not always reliable, but it should be possible in multilingual operating systems, since Plane 2 has
many Chinese characters that must be displayable in East Asian locales.

As discussed in Section 3.2.2 Mathematics style attributes common to token elements, MathML offers an
alternative mechanism to specify mathematical alphanumeric characters. This alternative mechanism spans the

7 Characters, Entities and Fonts

290

http://www.w3.org/2003/entities/2007/htmlmathml.ent

gap between the specification of the mathematical alphanumeric symbols as Unicode code points, and the
deployment of software and fonts that support them. Namely, one uses the mathvariant attribute on a token
element such as mi to indicate that the character data in the token element selects a mathematical alphanumeric
symbol.

In principle, any mathvariant value may be used with any character data to define a specific symbolic token.
In practice, only certain combinations of character data and mathvariant values will be visually distinguished
by a given renderer. In this section we explain the correspondence between certain characters in Plane 0 that,
when modified by the mathvariant attribute, are considered equivalent to mathematical alphanumeric symbol
characters.

The mathematical alphanumeric symbol characters in Plane 1 include alphabets for Latin upper-case and lower-
case letters, including dotless i and j, Greek upper-case and lower-case letters, Greek symbols (also known
as variants), including upper-case and lower-case digamma, and Latin digits. These alphabets provide Plane 1
Unicode code points that differ from corresponding Plane 0 characters only by a variation in font that carries
mathematical semantics when used in a formula.

The mathvariant attribute uses exactly this correspondence to provide an alternate markup encoding that
selects these Plane 1 characters. For example, the Mathematical Italic alphabet runs from U+1D434 ("A") to
U+1D467 ("z"). Thus, a typical example of an identifier for a variable, marked up as

<mi>a</mi>

and rendered in a mathematical italic font (as described in Section 3.2.3 Identifier <mi>) could equivalently be
marked up as

<mi>𝑎<!--MATHEMATICAL ITALIC SMALL A--></mi>

which invokes the Mathematical Italic lower-case a explicitly.

An important use of the mathematical alphanumeric symbols in Plane 1 is for identifiers normally printed in
special mathematical fonts, such as Fraktur, Greek, Boldface, or Script. As another example, the Mathematical
Fraktur alphabet runs from U+1D504 ("A") to U+1D537 ("z"). Thus, an identifier for a variable that uses Fraktur
characters could be marked up as

<mi>𝔄<!--MATHEMATICAL FRAKTUR CAPITAL A--></mi>

An alternative, equivalent markup for this example is to use the common upper-case A, modified by using the
mathvariant attribute:

<mi mathvariant="fraktur">A</mi>

A MathML processor must treat a mathematical alphanumeric character (when it appears) as identical to the cor-
responding combination of the unstyled character and mathvariant attribute value. It is important to note that the
mathvariant attribute specifies a semantic class of characters, each of which has a specific appearance that should
be protected from document-wide style changes, so the intended meaning of the character may be preserved. The
use of a mathematical alphanumeric character is also intended to preserve this specific appearance, and so these
characters are also not to be affected by surrounding style changes.

Not all combinations of character data and mathvariant values have assigned Unicode code points. For example,
sans-serif Greek alphabets are omitted, while bold sans-serif Greek alphabets are included, and bold digits are

7.5 Mathematical Alphanumeric Symbols

291

included, while bold-italic digits are excluded. A renderer should visually distinguish those combinations of
character data and mathvariant attribute values that it can subject to the availability of font characters. It is
intended that renderers distinghish at least those combinations that have equivalent Unicode code points, and
renderers are free to ignore those combinations that have no assigned Unicode code point or for which adequate
font support is unavailable.

The exact correspondence between a mathematical alphabetic character and an unstyled character is complicated
by the fact that certain characters that were already present in Unicode in Plane 0 are not in the 'expected'
sequence in Plane 1. The table below shows the Plane 0 mathematical alphanumeric symbols, listing for each
character its Unicode code point, its Unicode character name, its corresponding unstyled alphabetic character,
and the code point in Plane 1 where one might naturally have sought this character.

Unicode code point Unicode name BMP code Plane-1 code

U+210E PLANCK CONSTANT U+0068 U+1D455
U+212C SCRIPT CAPITAL B U+0042 U+1D49D
U+2130 SCRIPT CAPITAL E U+0045 U+1D4A0
U+2131 SCRIPT CAPITAL F U+0046 U+1D4A1
U+210B SCRIPT CAPITAL H U+0048 U+1D4A3
U+2110 SCRIPT CAPITAL I U+0049 U+1D4A4
U+2112 SCRIPT CAPITAL L U+004C U+1D4A7
U+2133 SCRIPT CAPITAL M U+004D U+1D4A8
U+211B SCRIPT CAPITAL R U+0052 U+1D4AD
U+212F SCRIPT SMALL E U+0065 U+1D4BA
U+210A SCRIPT SMALL G U+0067 U+1D4BC
U+2134 SCRIPT SMALL O U+006F U+1D4C4
U+212D BLACK-LETTER CAPITAL C U+0043 U+1D506
U+210C BLACK-LETTER CAPITAL H U+0048 U+1D50B
U+2111 BLACK-LETTER CAPITAL I U+0049 U+1D50C
U+211C BLACK-LETTER CAPITAL R U+0052 U+1D515
U+2128 BLACK-LETTER CAPITAL Z U+005A U+1D51D
U+2102 DOUBLE-STRUCK CAPITAL C U+0043 U+1D53A
U+210D DOUBLE-STRUCK CAPITAL H U+0048 U+1D53F
U+2115 DOUBLE-STRUCK CAPITAL N U+004E U+1D545
U+2119 DOUBLE-STRUCK CAPITAL P U+0050 U+1D547
U+211A DOUBLE-STRUCK CAPITAL Q U+0051 U+1D548
U+211D DOUBLE-STRUCK CAPITAL R U+0052 U+1D549
U+2124 DOUBLE-STRUCK CAPITAL Z U+005A U+1D551

Mathematical Alphanumeric Symbol characters should not be used for styled prose. For example, Mathematical
Fraktur A must not be used to just select a blackletter font for an uppercase A as it would create problems for
searching, restyling (e.g. for accessibility), and many other kinds of processing.

7.6 Non-Marking Characters

Some characters, although important for the quality of print or alternative rendering, do not have glyph marks
that correspond directly to them. They are called here non-marking characters. Their roles are discussed in
Chapter 3 Presentation Markup and Chapter 4 Content Markup.

7 Characters, Entities and Fonts

292

In MathML, control of page composition, such as line-breaking, is effected by the use of the proper attributes on
the mo and mspace elements.

The characters below are not simple spacers. They are especially important new additions to the UCS because
they provide textual clues which can increase the quality of print rendering, permit correct audio rendering, and
allow the unique recovery of mathematical semantics from text which is visually ambiguous.

Unicode code
point

Unicode name Description

U+2061 FUNCTION
APPLICATION

character showing function application in presentation tagging
(Section 3.2.5 Operator, Fence, Separator or Accent <mo>)

U+2062 INVISIBLE TIMES marks multiplication when it is understood without a mark
(Section 3.2.5 Operator, Fence, Separator or Accent <mo>)

U+2063 INVISIBLE
SEPARATOR

used as a separator, e.g., in indices (Section 3.2.5 Operator, Fence,
Separator or Accent <mo>)

U+2064 INVISIBLE PLUS marks addition, especially in constructs such as 1½ (Section 3.2.5
Operator, Fence, Separator or Accent <mo>)

7.7 Anomalous Mathematical Characters

Some characters which occur fairly often in mathematical texts, and have special significance there, are fre-
quently confused with other similar characters in the UCS. In some cases, common keyboard characters have
become entrenched as alternatives to the more appropriate mathematical characters. In others, characters have
legitimate uses in both formulas and text, but conflicting rendering and font conventions. All these characters are
called here anomalous characters.

7.7.1 Keyboard Characters

Typical Latin-1-based keyboards contain several characters that are visually similar to important mathematical
characters. Consequently, these characters are frequently substituted, intentionally or unintentionally, for their
more correct mathematical counterparts.

7.7.1.1 Minus

The most common ordinary text character which enjoys a special mathematical use is U+002D [HYPHEN-
MINUS]. As its Unicode name suggests, it is used as a hyphen in prose contexts, and as a minus or negative sign
in formulas. For text use, there is a specific code point U+2010 [HYPHEN] which is intended for prose contexts,
and which should render as a hyphen or short dash. For mathematical use, there is another code point U+2212
[MINUS SIGN] which is intended for mathematical formulas, and which should render as a longer minus or
negative sign. MathML renderers should treat U+002D [HYPHEN-MINUS] as equivalent to U+2212 [MINUS
SIGN] in formula contexts such as mo, and as equivalent to U+2010 [HYPHEN] in text contexts such as mtext.

7.7.1.2 Apostrophes, Quotes and Primes

On a typical European keyboard there is a key available which is viewed as an apostrophe or a single quotation
mark (an upright or right quotation mark). Thus one key is doing double duty for prose input to enter U+0027
[APOSTROPHE] and U+2019 [RIGHT SINGLE QUOTATION MARK]. In mathematical contexts it is also
commonly used for the prime, which should be U+2032 [PRIME]. Unicode recognizes the overloading of this
symbol and remarks that it can also signify the units of minutes or feet. In the unstructured printed text of
normal prose the characters are placed next to one another. The U+0027 [APOSTROPHE] and U+2019 [RIGHT
SINGLE QUOTATION MARK] are marked with glyphs that are small and raised with respect to the center line

7.7 Anomalous Mathematical Characters

293

of the text. The fonts used provide small raised glyphs in the appropriate places indexed by the Unicode codes.
The U+2032 [PRIME] of mathematics is similarly treated in fuller Unicode fonts.

MathML renderers are encouraged to treat U+0027 [APOSTROPHE] as U+2032 [PRIME] when appropriate in
formula contexts.

A final remark is that a ‘prime’ is often used in transliteration of the Cyrillic character U+044C [CYRILLIC
SMALL LETTER SOFT SIGN]. This different use of primes is not part of considerations for mathematical
formulas.

7.7.1.3 Other Keyboard Substitutions

While the minus and prime characters are the most common and important keyboard characters with more pre-
cise mathematical counterparts, there are a number of other keyboard character substitutions that are sometime
used. For example some may expect

<mo>''</mo>

to be treated as U+2033 [DOUBLE PRIME], and analogous substitutions could perhaps be made for U+2034
[TRIPLE PRIME] and U+2057 [QUADRUPLE PRIME]. Similarly, sometimes U+007C [VERTICAL LINE]
is used for U+2223 [DIVIDES]. MathML regards these as application-specific authoring conventions, and
recommends that authoring tools generate markup using the more precise mathematical characters for better
interoperability.

7.7.2 Pseudo-scripts

There are a number of characters in the UCS that traditionally have been taken to have a natural ‘script’ aspect.
The visual presentation of these characters is similar to a script, that is, raised from the baseline, and smaller than
the base font size. The degree symbol and prime characters are examples. For use in text, such characters occur
in sequence with the identifier they follow, and are typically rendered using the same font. These characters are
called pseudo-scripts here.

In almost all mathematical contexts, pseudo-script characters should be associated with a base expression using
explicit script markup in MathML. For example, the preferred encoding of "x prime" is

<msup><mi>x</mi><mo>′<!--PRIME--></mo></msup>

and not

<mi>x'</mi>

or any other variants not using an explicit script construct. Note, however, that within text contexts such as
mtext, pseudo-scripts may be used in sequence with other character data.

There are two reasons why explicit markup is preferable in mathematical contexts. First, a problem arises with
typesetting, when pseudo-scripts are used with subscripted identifiers. Traditionally, subscripting of x' would be
rendered stacked under the prime. This is easily accomplished with script markup, for example:

<mrow><msubsup><mi>x</mi><mn>0</mn><mo>′<!--PRIME--></mo></msubsup></mrow>

By contrast,

7 Characters, Entities and Fonts

294

<mrow><msub><mi>x'</mi><mn>0</mn></msub></mrow>

will render with staggered scripts.

Note this means that a renderer of MathML will have to treat pseudo-scripts differently from most other charac-
ter codes it finds in a superscript position; in most fonts, the glyphs for pseudo-scripts are already shrunk and
raised from the baseline.

The second reason that explicit script markup is preferrable to juxtaposition of characters is that it generally
better reflects the intended mathematical structure. For example,

<msup>
 <mrow><mo>(</mo><mrow><mi>f</mi><mo>+</mo><mi>g</mi></mrow><mo>)</mo>

</mrow>
 <mo>′<!--PRIME--></mo>
</msup>

accurately reflects that the prime here is operating on an entire expression, and does not suggest that the prime is
acting on the final right parenthesis.

However, the data model for all MathML token elements is Unicode text, so one cannot rule out the possibility
of valid MathML markup containing constructions such as

<mrow><mi>x'</mi></mrow>

and

<mrow><mi>x</mi><mo>'</mo></mrow>

While the first form may, in some rare situations, legitmately be used to distinguish a multi-character identifer
named x' from the derivative of a function x, such forms should generally be avoided. Authoring and validation
tools are encouraged to generate the recommended script markup:

<mrow><msup><mi>x</mi><mo>′<!--PRIME--></mo></msup></mrow>

The U+2032 [PRIME] character is perhaps the most common pseudo-script, but there are many others, as listed
below:

Pseudo-script Characters

U+0022 QUOTATION MARK
U+0027 APOSTROPHE
U+002A ASTERISK
U+0060 GRAVE ACCENT
U+00AA FEMININE ORDINAL INDICATOR
U+00B0 DEGREE SIGN
U+00B2 SUPERSCRIPT TWO
U+00B3 SUPERSCRIPT THREE
U+00B4 ACUTE ACCENT
U+00B9 SUPERSCRIPT ONE
U+00BA MASCULINE ORDINAL INDICATOR

7.7 Anomalous Mathematical Characters

295

Pseudo-script Characters

U+2018 LEFT SINGLE QUOTATION MARK
U+2019 RIGHT SINGLE QUOTATION MARK
U+201A SINGLE LOW-9 QUOTATION MARK
U+201B SINGLE HIGH-REVERSED-9 QUOTATION MARK
U+201C LEFT DOUBLE QUOTATION MARK
U+201D RIGHT DOUBLE QUOTATION MARK
U+201E DOUBLE LOW-9 QUOTATION MARK
U+201F DOUBLE HIGH-REVERSED-9 QUOTATION MARK
U+2032 PRIME
U+2033 DOUBLE PRIME
U+2034 TRIPLE PRIME
U+2035 REVERSED PRIME
U+2036 REVERSED DOUBLE PRIME
U+2037 REVERSED TRIPLE PRIME
U+2057 QUADRUPLE PRIME

In addition, the characters in the Unicode Superscript and Subscript block (beginning at U+2070) should be
treated as pseudo-scripts when they appear in mathematical formulas.

Note that several of these characters are common on keyboards, including U+002A [ASTERISK], U+00B0
[DEGREE SIGN], U+2033 [DOUBLE PRIME], and U+2035 [REVERSED PRIME] also known as a back
prime.

7.7.3 Combining Characters

In the UCS there are many combining characters that are intended to be used for the many accents of numerous
different natural languages. Some of them may seem to provide markup needed for mathematical accents. They
should not be used in mathematical markup. Superscript, subscript, underscript, and overscript constructions
as just discussed above should be used for this purpose. Of course, combining characters may be used in
multi-character identifiers as they are needed, or in text contexts.

There is one more case where combining characters turn up naturally in mathematical markup. Some relations
have associated negations, such as U+226F [NOT GREATER-THAN] for the negation of U+003E [GREATER-
THAN SIGN]. The glyph for U+226F [NOT GREATER-THAN] is usually just that for U+003E [GREATER-
THAN SIGN] with a slash through it. Thus it could also be expressed by U+003E-0338 making use of the
combining slash U+0338 [COMBINING LONG SOLIDUS OVERLAY]. That is true of 25 other characters
in common enough mathematical use to merit their own Unicode code points. In the other direction there are
31 character entity names listed in [Entities] which are to be expressed using U+0338 [COMBINING LONG
SOLIDUS OVERLAY].

In a similar way there are mathematical characters which have negations given by a vertical bar overlay U+20D2
[COMBINING LONG VERTICAL LINE OVERLAY]. Some are available in pre-composed forms, and some
named character entities are given explicitly as combinations. In addition there are examples using U+0333
[COMBINING DOUBLE LOW LINE] and U+20E5 [COMBINING REVERSE SOLIDUS OVERLAY], and
variants specified by use of the U+FE00 [VARIATION SELECTOR-1]. For fuller listing of these cases see the
listings in [Entities].

The general rule is that a base character followed by a string of combining characters should be treated just as
though it were the pre-composed character that results from the combination, if such a character exists.

7 Characters, Entities and Fonts

296

A Parsing MathML

A.1 Use of MathML as Well-Formed XML

A MathML document must be a well-formed XML document using elements in the MathML namespace as
defined by this specification, however it is not required that the document refer to any specific Document
Type Definition (DTD) or schema that specifies MathML. It is sometimes advantageous not to specify such a
language definition as these files are large, often much larger than the MathML expression and unless they have
been previously cached by the MathML application, the time taken to fetch the DTD or schema may have an
appreciable effect on the processing of the MathML document.

Note that if no DTD is specified with a DOCTYPE declaration, that entity references (for example to refer to
MathML characters by name) may not be used. The document should be encoded in an encoding (for example
UTF-8) in which all needed characters may be encoded as character data, or characters may be referenced using
numeric character references, for example ∫ rather than ∫

If a MathML fragment is parsed without a DTD, in other words as a well-formed XML fragment, it is the
responsibility of the processing application to treat the white space characters occurring outside of token ele-
ments as not significant.

However, in many circumstances, especially while producing or editing MathML, it is useful to use a language
definition to constrain the editing process or to check the correctness of generated files. The following section,
Section A.2 Using the RelaxNG Schema for MathML3, discusses the RelaxNG Schema for MathML3 [RELAX-
NG], which forms a normative part of the specification. Following that, Section A.4 Using the MathML XML
Schema, and Section A.3 Using the MathML DTD discuss alternative languages definition using the document
type definitions (DTD) and the W3C XML schema language, [XMLSchemas], both of which are derived from
the normative RelaxNG schema automatically. One should note that the schema definitions of the language is
currently stricter than the DTD version. That is, a schema validating processor will declare invalid documents
that are declared valid by a (DTD) validating XML parser. This is partly due to the fact that the XML schema
language may express additional constraints not expressable in the DTD, and partly due to the fact that for
reasons of compatibility with earlier releases, the DTD is intentionally forgiving in some places and does not
enforce constraints that are specified in the text of this specification.

A.2 Using the RelaxNG Schema for MathML3

MathML documents should be validated using the RelaxNG Schema for MathML, either in the XML encoding
(http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rng) or in compact notation (http://www.w3.org/Math/
RelaxNG/mathml3/mathml3.rnc) which is also shown below.

In contrast to DTDs there is no in-document method to associate a RelaxNG schema with a document.

We provide five RelaxNG schema for MathML3 in five parts:

• The grammar for full MathML•

• The grammar for elements common to Content and Presentation•

• The grammar for Presentation MathML•

• The grammar for Strict Content MathML•

• The grammar for Content MathML3•

297

http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rng
http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rnc

A.2.1 Full MathML

The RelaxNG schema for full MathML builds on the schema describing the various parts of the language which
are given in the following sections. It can be found at http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rnc.

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2010 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

Content MathML
include "mathml3-content.rnc"

Presentation MathML
include "mathml3-presentation.rnc"

math and semantics common to both Content and Presentation
include "mathml3-common.rnc"

A.2.2 Elements Common to Presentation and Content MathML

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2014 W3C (MIT, ERCIM, Keio, Beihang)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"
namespace local = ""

start = math

math = element math {math.attributes, MathExpression*}
MathExpression = semantics

NonMathMLAtt = attribute (* - (local:*|m:*)) {xsd:string}

CommonDeprecatedAtt = attribute other {text}?

CommonAtt = attribute id {xsd:ID}?,
 attribute xref {text}?,
 attribute class {xsd:NMTOKENS}?,
 attribute style {xsd:string}?,
 attribute href {xsd:anyURI}?,
 CommonDeprecatedAtt,
 NonMathMLAtt*

A Parsing MathML

298

http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rnc

math.attributes = CommonAtt,
 attribute display {"block" | "inline"}?,
 attribute maxwidth {length}?,
 attribute overflow {"linebreak" | "scroll" | "elide" | "truncate" | "scale"}?,
 attribute altimg {xsd:anyURI}?,
 attribute altimg-width {length}?,
 attribute altimg-height {length}?,
 attribute altimg-valign {length | "top" | "middle" | "bottom"}?,
 attribute alttext {text}?,
 attribute cdgroup {xsd:anyURI}?,
 math.deprecatedattributes

the mathml3-presentation schema adds additional attributes
to the math element, all those valid on mstyle

math.deprecatedattributes = attribute mode {xsd:string}?,
 attribute macros {xsd:string}?

name = attribute name {xsd:NCName}
cd = attribute cd {xsd:NCName}

src = attribute src {xsd:anyURI}?

annotation = element annotation {annotation.attributes,text}

annotation-xml.model = (MathExpression|anyElement)*

anyElement = element (* - m:*) {(attribute * {text}|text| anyElement)*}

annotation-xml = element annotation-xml {annotation.attributes,
 annotation-xml.model}
annotation.attributes = CommonAtt,

 cd?,
 name?,
 DefEncAtt,
 src?

DefEncAtt = attribute encoding {xsd:string}?,
 attribute definitionURL {xsd:anyURI}?

semantics = element semantics {semantics.attributes,
 MathExpression,
 (annotation|annotation-xml)*}
semantics.attributes = CommonAtt, DefEncAtt, cd?, name?

length
wrapped for display
 = xsd:string {
 pattern = '\s*((-?[0-9]*([0-9]\.?|\.[0-9])[0-9]*(e[mx]|in|cm|mm|p[xtc]|%)?)|
 (negative)?((very){0,2}thi(n|ck)|medium)mathspace)\s*'
}

A.2.3 The Grammar for Presentation MathML

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.

A.2 Using the RelaxNG Schema for MathML3

299

#
Copyright 1998-2014 W3C (MIT, ERCIM, Keio, Beihang)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

MathExpression |= PresentationExpression

ImpliedMrow = MathExpression*

TableRowExpression = mtr|mlabeledtr

TableCellExpression = mtd

MstackExpression = MathExpression|mscarries|msline|msrow|msgroup

MsrowExpression = MathExpression|none

MultiScriptExpression = (MathExpression|none),(MathExpression|none)

mpadded-length
wrapped for display
 = xsd:string {
 pattern = '\s*([\+\-]?[0-9]*([0-9]\.?|\.[0-9])[0-9]*\s*((%?\s*(height|depth|
 width)?)|e[mx]|in|cm|mm|p[xtc]|((negative)?((very){0,2}thi(n|ck)|
 medium)mathspace))?)\s*'}

linestyle = "none" | "solid" | "dashed"

verticalalign =
 "top" |
 "bottom" |
 "center" |
 "baseline" |
 "axis"

columnalignstyle = "left" | "center" | "right"

notationstyle =
 "longdiv" |
 "actuarial" |
 "radical" |
 "box" |
 "roundedbox" |
 "circle" |
 "left" |
 "right" |
 "top" |
 "bottom" |
 "updiagonalstrike" |
 "downdiagonalstrike" |
 "verticalstrike" |
 "horizontalstrike" |
 "madruwb"

idref = text
unsigned-integer = xsd:unsignedLong
integer = xsd:integer

A Parsing MathML

300

number = xsd:decimal

character = xsd:string {
 pattern = '\s*\S\s*'}

color
wrapped for display
 = xsd:string {
 pattern = '\s*((#[0-9a-fA-F]{3}([0-9a-fA-F]{3})?)|[aA][qQ][uU][aA]|
 [bB][lL][aA][cC][kK]|[bB][lL][uU][eE]|[fF][uU][cC][hH][sS][iI][aA]|
 [gG][rR][aA][yY]|[gG][rR][eE][eE][nN]|[lL][iI][mM][eE]|
 [mM][aA][rR][oO][oO][nN]|[nN][aA][vV][yY]|[oO][lL][iI][vV][eE]|
 [pP][uU][rR][pP][lL][eE]|[rR][eE][dD]|[sS][iI][lL][vV][eE][rR]|
 [tT][eE][aA][lL]|[wW][hH][iI][tT][eE]|[yY][eE][lL][lL][oO][wW])\s*'}

group-alignment = "left" | "center" | "right" | "decimalpoint"
group-alignment-list = list {group-alignment+}
group-alignment-list-list
wrapped for display
 = xsd:string {
 pattern = '(\s*\{\s*(left|center|right|decimalpoint)
 (\s+(left|center|right|decimalpoint))*\})*\s*'}
positive-integer = xsd:positiveInteger

TokenExpression = mi|mn|mo|mtext|mspace|ms

token.content = mglyph|malignmark|text

mi = element mi {mi.attributes, token.content*}
mi.attributes =
 CommonAtt,
 CommonPresAtt,
 TokenAtt

mn = element mn {mn.attributes, token.content*}
mn.attributes =
 CommonAtt,
 CommonPresAtt,
 TokenAtt

mo = element mo {mo.attributes, token.content*}
mo.attributes =
 CommonAtt,
 CommonPresAtt,
 TokenAtt,
 attribute form {"prefix" | "infix" | "postfix"}?,
 attribute fence {"true" | "false"}?,
 attribute separator {"true" | "false"}?,
 attribute lspace {length}?,
 attribute rspace {length}?,
 attribute stretchy {"true" | "false"}?,
 attribute symmetric {"true" | "false"}?,
 attribute maxsize {length | "infinity"}?,
 attribute minsize {length}?,
 attribute largeop {"true" | "false"}?,
 attribute movablelimits {"true" | "false"}?,
 attribute accent {"true" | "false"}?,

A.2 Using the RelaxNG Schema for MathML3

301

 attribute linebreak {"auto" | "newline" | "nobreak" | "goodbreak" | "badbreak"}?,
 attribute lineleading {length}?,
 attribute linebreakstyle {"before" | "after" | "duplicate" | "infixlinebreakstyle"}?,
 attribute linebreakmultchar {text}?,
 attribute indentalign {"left" | "center" | "right" | "auto" | "id"}?,
 attribute indentshift {length}?,
 attribute indenttarget {idref}?,
 attribute indentalignfirst {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,
 attribute indentshiftfirst {length | "indentshift"}?,
 attribute indentalignlast {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,
 attribute indentshiftlast {length | "indentshift"}?

mtext = element mtext {mtext.attributes, token.content*}
mtext.attributes =
 CommonAtt,
 CommonPresAtt,
 TokenAtt

mspace = element mspace {mspace.attributes, empty}
mspace.attributes =
 CommonAtt,
 CommonPresAtt,
 TokenAtt,
 attribute width {length}?,
 attribute height {length}?,
 attribute depth {length}?,
 attribute linebreak {"auto" | "newline" | "nobreak" | "goodbreak" | "badbreak" |

"indentingnewline"}?,
 attribute indentalign {"left" | "center" | "right" | "auto" | "id"}?,
 attribute indentshift {length}?,
 attribute indenttarget {idref}?,
 attribute indentalignfirst {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,
 attribute indentshiftfirst {length | "indentshift"}?,
 attribute indentalignlast {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,
 attribute indentshiftlast {length | "indentshift"}?

ms = element ms {ms.attributes, token.content*}
ms.attributes =
 CommonAtt,
 CommonPresAtt,
 TokenAtt,
 attribute lquote {text}?,
 attribute rquote {text}?

mglyph = element mglyph {mglyph.attributes, mglyph.deprecatedattributes,empty}
mglyph.attributes =
 CommonAtt, CommonPresAtt,
 attribute src {xsd:anyURI}?,
 attribute width {length}?,
 attribute height {length}?,
 attribute valign {length}?,
 attribute alt {text}?
mglyph.deprecatedattributes =

A Parsing MathML

302

 attribute index {integer}?,
 attribute mathvariant {"normal" | "bold" | "italic" | "bold-italic" |
 "double-struck" | "bold-fraktur" | "script" | "bold-script" |
 "fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |
 "sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |
 "looped" | "stretched"}?,
 attribute mathsize {"small" | "normal" | "big" | length}?,
 DeprecatedTokenAtt

msline = element msline {msline.attributes,empty}
msline.attributes =
 CommonAtt, CommonPresAtt,
 attribute position {integer}?,
 attribute length {unsigned-integer}?,
 attribute leftoverhang {length}?,
 attribute rightoverhang {length}?,
 attribute mslinethickness {length | "thin" | "medium" | "thick"}?

none = element none {none.attributes,empty}
none.attributes =
 CommonAtt,
 CommonPresAtt

mprescripts = element mprescripts {mprescripts.attributes,empty}
mprescripts.attributes =
 CommonAtt,
 CommonPresAtt

CommonPresAtt =
 attribute mathcolor {color}?,
 attribute mathbackground {color | "transparent"}?

TokenAtt =
 attribute mathvariant {"normal" | "bold" | "italic" | "bold-italic" |
 "double-struck" | "bold-fraktur" | "script" | "bold-script" |
 "fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |
 "sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |
 "looped" | "stretched"}?,
 attribute mathsize {"small" | "normal" | "big" | length}?,
 attribute dir {"ltr" | "rtl"}?,
 DeprecatedTokenAtt

DeprecatedTokenAtt =
 attribute fontfamily {text}?,
 attribute fontweight {"normal" | "bold"}?,
 attribute fontstyle {"normal" | "italic"}?,
 attribute fontsize {length}?,
 attribute color {color}?,
 attribute background {color | "transparent"}?

MalignExpression = maligngroup|malignmark

malignmark = element malignmark {malignmark.attributes, empty}
malignmark.attributes =
 CommonAtt, CommonPresAtt,
 attribute edge {"left" | "right"}?

maligngroup = element maligngroup {maligngroup.attributes, empty}
maligngroup.attributes =

A.2 Using the RelaxNG Schema for MathML3

303

 CommonAtt, CommonPresAtt,
 attribute groupalign {"left" | "center" | "right" | "decimalpoint"}?

PresentationExpression =
 TokenExpression | MalignExpression | mrow | mfrac | msqrt | mroot | mstyle |
 merror | mpadded | mphantom | mfenced | menclose | msub | msup | msubsup |
 munder | mover | munderover | mmultiscripts | mtable | mstack | mlongdiv |
 maction

mrow = element mrow {mrow.attributes, MathExpression*}
mrow.attributes =
 CommonAtt, CommonPresAtt,
 attribute dir {"ltr" | "rtl"}?

mfrac = element mfrac {mfrac.attributes, MathExpression, MathExpression}
mfrac.attributes =
 CommonAtt, CommonPresAtt,
 attribute linethickness {length | "thin" | "medium" | "thick"}?,
 attribute numalign {"left" | "center" | "right"}?,
 attribute denomalign {"left" | "center" | "right"}?,
 attribute bevelled {"true" | "false"}?

msqrt = element msqrt {msqrt.attributes, ImpliedMrow}
msqrt.attributes =
 CommonAtt, CommonPresAtt

mroot = element mroot {mroot.attributes, MathExpression, MathExpression}
mroot.attributes =
 CommonAtt, CommonPresAtt

mstyle = element mstyle {mstyle.attributes, ImpliedMrow}
mstyle.attributes =
 CommonAtt, CommonPresAtt,
 mstyle.specificattributes,
 mstyle.generalattributes,
 mstyle.deprecatedattributes

mstyle.specificattributes =
 attribute scriptlevel {integer}?,
 attribute displaystyle {"true" | "false"}?,
 attribute scriptsizemultiplier {number}?,
 attribute scriptminsize {length}?,
 attribute infixlinebreakstyle {"before" | "after" | "duplicate"}?,
 attribute decimalpoint {character}?

mstyle.generalattributes =
 attribute accent {"true" | "false"}?,
 attribute accentunder {"true" | "false"}?,
 attribute align {"left" | "right" | "center"}?,
 attribute alignmentscope {list {("true" | "false") +}}?,
 attribute bevelled {"true" | "false"}?,
 attribute charalign {"left" | "center" | "right"}?,
 attribute charspacing {length | "loose" | "medium" | "tight"}?,
 attribute close {text}?,

A Parsing MathML

304

 attribute columnalign {list {columnalignstyle+}}?,
 attribute columnlines {list {linestyle +}}?,
 attribute columnspacing {list {(length) +}}?,
 attribute columnspan {positive-integer}?,
 attribute columnwidth {list {("auto" | length | "fit") +}}?,
 attribute crossout {list {("none" | "updiagonalstrike" | "downdiagonalstrike" |

"verticalstrike" | "horizontalstrike")*}}?,
 attribute denomalign {"left" | "center" | "right"}?,
 attribute depth {length}?,
 attribute dir {"ltr" | "rtl"}?,
 attribute edge {"left" | "right"}?,
 attribute equalcolumns {"true" | "false"}?,
 attribute equalrows {"true" | "false"}?,
 attribute fence {"true" | "false"}?,
 attribute form {"prefix" | "infix" | "postfix"}?,
 attribute frame {linestyle}?,
 attribute framespacing {list {length, length}}?,
 attribute groupalign {group-alignment-list-list}?,
 attribute height {length}?,
 attribute indentalign {"left" | "center" | "right" | "auto" | "id"}?,
 attribute indentalignfirst {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,
 attribute indentalignlast {"left" | "center" | "right" | "auto" | "id" |

"indentalign"}?,
 attribute indentshift {length}?,
 attribute indentshiftfirst {length | "indentshift"}?,
 attribute indentshiftlast {length | "indentshift"}?,
 attribute indenttarget {idref}?,
 attribute largeop {"true" | "false"}?,
 attribute leftoverhang {length}?,
 attribute length {unsigned-integer}?,
 attribute linebreak {"auto" | "newline" | "nobreak" | "goodbreak" | "badbreak"}?,
 attribute linebreakmultchar {text}?,
 attribute linebreakstyle {"before" | "after" | "duplicate" | "infixlinebreakstyle"}?,
 attribute lineleading {length}?,
 attribute linethickness {length | "thin" | "medium" | "thick"}?,
 attribute location {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,
 attribute longdivstyle {"lefttop" | "stackedrightright" |
 "mediumstackedrightright" | "shortstackedrightright" | "righttop" |
 "left/\right" | "left)(right" | ":right=right" | "stackedleftleft" |
 "stackedleftlinetop"}?,
 attribute lquote {text}?,
 attribute lspace {length}?,
 attribute mathsize {"small" | "normal" | "big" | length}?,
 attribute mathvariant {"normal" | "bold" | "italic" | "bold-italic" |
 "double-struck" | "bold-fraktur" | "script" | "bold-script" |
 "fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-italic" |
 "sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |
 "looped" | "stretched"}?,
 attribute maxsize {length | "infinity"}?,
 attribute minlabelspacing {length}?,
 attribute minsize {length}?,
 attribute movablelimits {"true" | "false"}?,
 attribute mslinethickness {length | "thin" | "medium" | "thick"}?,
 attribute notation {text}?,
 attribute numalign {"left" | "center" | "right"}?,
 attribute open {text}?,
 attribute position {integer}?,
 attribute rightoverhang {length}?,
 attribute rowalign {list {verticalalign+}}?,
 attribute rowlines {list {linestyle +}}?,

A.2 Using the RelaxNG Schema for MathML3

305

 attribute rowspacing {list {(length) +}}?,
 attribute rowspan {positive-integer}?,
 attribute rquote {text}?,
 attribute rspace {length}?,
 attribute selection {positive-integer}?,
 attribute separator {"true" | "false"}?,
 attribute separators {text}?,
 attribute shift {integer}?,
 attribute side {"left" | "right" | "leftoverlap" | "rightoverlap"}?,
 attribute stackalign {"left" | "center" | "right" | "decimalpoint"}?,
 attribute stretchy {"true" | "false"}?,
 attribute subscriptshift {length}?,
 attribute superscriptshift {length}?,
 attribute symmetric {"true" | "false"}?,
 attribute valign {length}?,
 attribute width {length}?

mstyle.deprecatedattributes =
 DeprecatedTokenAtt,
 attribute veryverythinmathspace {length}?,
 attribute verythinmathspace {length}?,
 attribute thinmathspace {length}?,
 attribute mediummathspace {length}?,
 attribute thickmathspace {length}?,
 attribute verythickmathspace {length}?,
 attribute veryverythickmathspace {length}?

math.attributes &= CommonPresAtt
math.attributes &= mstyle.specificattributes
math.attributes &= mstyle.generalattributes

merror = element merror {merror.attributes, ImpliedMrow}
merror.attributes =
 CommonAtt, CommonPresAtt

mpadded = element mpadded {mpadded.attributes, ImpliedMrow}
mpadded.attributes =
 CommonAtt, CommonPresAtt,
 attribute height {mpadded-length}?,
 attribute depth {mpadded-length}?,
 attribute width {mpadded-length}?,
 attribute lspace {mpadded-length}?,
 attribute voffset {mpadded-length}?

mphantom = element mphantom {mphantom.attributes, ImpliedMrow}
mphantom.attributes =
 CommonAtt, CommonPresAtt

mfenced = element mfenced {mfenced.attributes, MathExpression*}
mfenced.attributes =
 CommonAtt, CommonPresAtt,
 attribute open {text}?,
 attribute close {text}?,
 attribute separators {text}?

menclose = element menclose {menclose.attributes, ImpliedMrow}

A Parsing MathML

306

menclose.attributes =
 CommonAtt, CommonPresAtt,
 attribute notation {text}?

msub = element msub {msub.attributes, MathExpression, MathExpression}
msub.attributes =
 CommonAtt, CommonPresAtt,
 attribute subscriptshift {length}?

msup = element msup {msup.attributes, MathExpression, MathExpression}
msup.attributes =
 CommonAtt, CommonPresAtt,
 attribute superscriptshift {length}?

msubsup = element msubsup {msubsup.attributes, MathExpression, MathExpression,
MathExpression}

msubsup.attributes =
 CommonAtt, CommonPresAtt,
 attribute subscriptshift {length}?,
 attribute superscriptshift {length}?

munder = element munder {munder.attributes, MathExpression, MathExpression}
munder.attributes =
 CommonAtt, CommonPresAtt,
 attribute accentunder {"true" | "false"}?,
 attribute align {"left" | "right" | "center"}?

mover = element mover {mover.attributes, MathExpression, MathExpression}
mover.attributes =
 CommonAtt, CommonPresAtt,
 attribute accent {"true" | "false"}?,
 attribute align {"left" | "right" | "center"}?

munderover = element munderover {munderover.attributes, MathExpression,
MathExpression, MathExpression}

munderover.attributes =
 CommonAtt, CommonPresAtt,
 attribute accent {"true" | "false"}?,
 attribute accentunder {"true" | "false"}?,
 attribute align {"left" | "right" | "center"}?

mmultiscripts = element mmultiscripts {mmultiscripts.attributes, MathExpression,
MultiScriptExpression*,(mprescripts, MultiScriptExpression*)?}

mmultiscripts.attributes =
 msubsup.attributes

mtable = element mtable {mtable.attributes, TableRowExpression*}
mtable.attributes =
 CommonAtt, CommonPresAtt,
 attribute align {xsd:string {
 pattern ='\s*(top|bottom|center|baseline|axis)(\s+-?[0-9]+)?\s*'}}?,
 attribute rowalign {list {verticalalign+}}?,
 attribute columnalign {list {columnalignstyle+}}?,

A.2 Using the RelaxNG Schema for MathML3

307

 attribute groupalign {group-alignment-list-list}?,
 attribute alignmentscope {list {("true" | "false") +}}?,
 attribute columnwidth {list {("auto" | length | "fit") +}}?,
 attribute width {"auto" | length}?,
 attribute rowspacing {list {(length) +}}?,
 attribute columnspacing {list {(length) +}}?,
 attribute rowlines {list {linestyle +}}?,
 attribute columnlines {list {linestyle +}}?,
 attribute frame {linestyle}?,
 attribute framespacing {list {length, length}}?,
 attribute equalrows {"true" | "false"}?,
 attribute equalcolumns {"true" | "false"}?,
 attribute displaystyle {"true" | "false"}?,
 attribute side {"left" | "right" | "leftoverlap" | "rightoverlap"}?,
 attribute minlabelspacing {length}?

mlabeledtr = element mlabeledtr {mlabeledtr.attributes, TableCellExpression+}
mlabeledtr.attributes =
 mtr.attributes

mtr = element mtr {mtr.attributes, TableCellExpression*}
mtr.attributes =
 CommonAtt, CommonPresAtt,
 attribute rowalign {"top" | "bottom" | "center" | "baseline" | "axis"}?,
 attribute columnalign {list {columnalignstyle+}}?,
 attribute groupalign {group-alignment-list-list}?

mtd = element mtd {mtd.attributes, ImpliedMrow}
mtd.attributes =
 CommonAtt, CommonPresAtt,
 attribute rowspan {positive-integer}?,
 attribute columnspan {positive-integer}?,
 attribute rowalign {"top" | "bottom" | "center" | "baseline" | "axis"}?,
 attribute columnalign {columnalignstyle}?,
 attribute groupalign {group-alignment-list}?

mstack = element mstack {mstack.attributes, MstackExpression*}
mstack.attributes =
 CommonAtt, CommonPresAtt,
 attribute align {xsd:string {
 pattern ='\s*(top|bottom|center|baseline|axis)(\s+-?[0-9]+)?\s*'}}?,
 attribute stackalign {"left" | "center" | "right" | "decimalpoint"}?,
 attribute charalign {"left" | "center" | "right"}?,
 attribute charspacing {length | "loose" | "medium" | "tight"}?

mlongdiv = element mlongdiv {mlongdiv.attributes, MstackExpression, MstackExpression,
MstackExpression+}

mlongdiv.attributes =
 msgroup.attributes,
 attribute longdivstyle {"lefttop" | "stackedrightright" |
 "mediumstackedrightright" | "shortstackedrightright" | "righttop" |
 "left/\right" | "left)(right" | ":right=right" | "stackedleftleft" |
 "stackedleftlinetop"}?

msgroup = element msgroup {msgroup.attributes, MstackExpression*}

A Parsing MathML

308

msgroup.attributes =
 CommonAtt, CommonPresAtt,
 attribute position {integer}?,
 attribute shift {integer}?

msrow = element msrow {msrow.attributes, MsrowExpression*}
msrow.attributes =
 CommonAtt, CommonPresAtt,
 attribute position {integer}?

mscarries = element mscarries {mscarries.attributes, (MsrowExpression|mscarry)*}
mscarries.attributes =
 CommonAtt, CommonPresAtt,
 attribute position {integer}?,
 attribute location {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,
 attribute crossout {list {("none" | "updiagonalstrike" | "downdiagonalstrike" |

"verticalstrike" | "horizontalstrike")*}}?,
 attribute scriptsizemultiplier {number}?

mscarry = element mscarry {mscarry.attributes, MsrowExpression*}
mscarry.attributes =
 CommonAtt, CommonPresAtt,
 attribute location {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,
 attribute crossout {list {("none" | "updiagonalstrike" | "downdiagonalstrike" |

"verticalstrike" | "horizontalstrike")*}}?

maction = element maction {maction.attributes, MathExpression+}
maction.attributes =
 CommonAtt, CommonPresAtt,
 attribute actiontype {text},
 attribute selection {positive-integer}?

A.2.4 The Grammar for Strict Content MathML3

The grammar for Strict Content MathML3 can be found at http://www.w3.org/Math/RelaxNG/mathml3/
mathml3-strict-content.rnc.

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2014 W3C (MIT, ERCIM, Keio, Beihang)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

ContExp = semantics-contexp | cn | ci | csymbol | apply | bind | share | cerror |
cbytes | cs

cn = element cn {cn.attributes, cn.content}
cn.content = text
cn.attributes = CommonAtt, attribute type {"integer" | "real" | "double" |

A.2 Using the RelaxNG Schema for MathML3

309

http://www.w3.org/Math/RelaxNG/mathml3/mathml3-strict-content.rnc

"hexdouble"}

semantics-ci = element semantics {semantics.attributes,(ci|semantics-ci),
 (annotation|annotation-xml)*}

semantics-contexp = element semantics {semantics.attributes, ContExp,
 (annotation|annotation-xml)*}

ci = element ci {ci.attributes, ci.content}
ci.attributes = CommonAtt, ci.type?
ci.type = attribute type {"integer" | "rational" | "real" | "complex" |
 "complex-polar" | "complex-cartesian" | "constant" | "function" |
 "vector" | "list" | "set" | "matrix"}
ci.content = text

csymbol = element csymbol {csymbol.attributes, csymbol.content}

SymbolName = xsd:NCName
csymbol.attributes = CommonAtt, cd
csymbol.content = SymbolName

BvarQ = bvar*
bvar = element bvar {CommonAtt, (ci | semantics-ci)}

apply = element apply {CommonAtt, apply.content}
apply.content = ContExp+

bind = element bind {CommonAtt, bind.content}
bind.content = ContExp, bvar*, ContExp

share = element share {CommonAtt, src, empty}

cerror = element cerror {cerror.attributes, csymbol, ContExp*}
cerror.attributes = CommonAtt

cbytes = element cbytes {cbytes.attributes, base64}
cbytes.attributes = CommonAtt
base64 = xsd:base64Binary

cs = element cs {cs.attributes, text}
cs.attributes = CommonAtt

MathExpression |= ContExp

A.2.5 The Grammar for Content MathML

The grammar for Content MathML3 builds on the grammar for the Strict Content MathML subset, and can be
found at http://www.w3.org/Math/RelaxNG/mathml3/mathml3-content.rnc.

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2014 W3C (MIT, ERCIM, Keio, Beihang)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

A Parsing MathML

310

http://www.w3.org/Math/RelaxNG/mathml3/mathml3-content.rnc

include "mathml3-strict-content.rnc"{
 cn.content = (text | mglyph | sep | PresentationExpression)*
 cn.attributes = CommonAtt, DefEncAtt, attribute type {text}?, base?

 ci.attributes = CommonAtt, DefEncAtt, ci.type?
 ci.type = attribute type {text}
 ci.content = (text | mglyph | PresentationExpression)*

 csymbol.attributes = CommonAtt, DefEncAtt, attribute type {text}?, cd?
 csymbol.content = (text | mglyph | PresentationExpression)*

 bvar = element bvar {CommonAtt, ((ci | semantics-ci) & degree?)}

 cbytes.attributes = CommonAtt, DefEncAtt

 cs.attributes = CommonAtt, DefEncAtt

 apply.content = ContExp+ | (ContExp, BvarQ, Qualifier*, ContExp*)

 bind.content = apply.content
}

base = attribute base {text}

sep = element sep {empty}
PresentationExpression |= notAllowed

DomainQ = (domainofapplication|condition|interval|(lowlimit, uplimit?))*
domainofapplication = element domainofapplication {ContExp}
condition = element condition {ContExp}
uplimit = element uplimit {ContExp}
lowlimit = element lowlimit {ContExp}

Qualifier = DomainQ|degree|momentabout|logbase
degree = element degree {ContExp}
momentabout = element momentabout {ContExp}
logbase = element logbase {ContExp}

type = attribute type {text}
order = attribute order {"numeric" | "lexicographic"}
closure = attribute closure {text}

ContExp |= piecewise

piecewise = element piecewise {CommonAtt, DefEncAtt,(piece* & otherwise?)}

piece = element piece {CommonAtt, DefEncAtt, ContExp, ContExp}

otherwise = element otherwise {CommonAtt, DefEncAtt, ContExp}

DeprecatedContExp = reln | fn | declare
ContExp |= DeprecatedContExp

reln = element reln {ContExp*}
fn = element fn {ContExp}

A.2 Using the RelaxNG Schema for MathML3

311

declare = element declare {attribute type {xsd:string}?,
 attribute scope {xsd:string}?,
 attribute nargs {xsd:nonNegativeInteger}?,
 attribute occurrence {"prefix"|"infix"|"function-model"}?,
 DefEncAtt,
 ContExp+}

interval.class = interval
ContExp |= interval.class

interval = element interval { CommonAtt, DefEncAtt, closure?, ContExp, ContExp}

unary-functional.class = inverse | ident | domain | codomain | image | ln | log |
moment

ContExp |= unary-functional.class

inverse = element inverse { CommonAtt, DefEncAtt, empty}
ident = element ident { CommonAtt, DefEncAtt, empty}
domain = element domain { CommonAtt, DefEncAtt, empty}
codomain = element codomain { CommonAtt, DefEncAtt, empty}
image = element image { CommonAtt, DefEncAtt, empty}
ln = element ln { CommonAtt, DefEncAtt, empty}
log = element log { CommonAtt, DefEncAtt, empty}
moment = element moment { CommonAtt, DefEncAtt, empty}

lambda.class = lambda
ContExp |= lambda.class

lambda = element lambda { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp}

nary-functional.class = compose
ContExp |= nary-functional.class

compose = element compose { CommonAtt, DefEncAtt, empty}

binary-arith.class = quotient | divide | minus | power | rem | root
ContExp |= binary-arith.class

quotient = element quotient { CommonAtt, DefEncAtt, empty}
divide = element divide { CommonAtt, DefEncAtt, empty}
minus = element minus { CommonAtt, DefEncAtt, empty}
power = element power { CommonAtt, DefEncAtt, empty}
rem = element rem { CommonAtt, DefEncAtt, empty}
root = element root { CommonAtt, DefEncAtt, empty}

unary-arith.class = factorial | minus | root | abs | conjugate | arg | real |
imaginary | floor | ceiling | exp

ContExp |= unary-arith.class

factorial = element factorial { CommonAtt, DefEncAtt, empty}
abs = element abs { CommonAtt, DefEncAtt, empty}
conjugate = element conjugate { CommonAtt, DefEncAtt, empty}
arg = element arg { CommonAtt, DefEncAtt, empty}
real = element real { CommonAtt, DefEncAtt, empty}

A Parsing MathML

312

imaginary = element imaginary { CommonAtt, DefEncAtt, empty}
floor = element floor { CommonAtt, DefEncAtt, empty}
ceiling = element ceiling { CommonAtt, DefEncAtt, empty}
exp = element exp { CommonAtt, DefEncAtt, empty}

nary-minmax.class = max | min
ContExp |= nary-minmax.class

max = element max { CommonAtt, DefEncAtt, empty}
min = element min { CommonAtt, DefEncAtt, empty}

nary-arith.class = plus | times | gcd | lcm
ContExp |= nary-arith.class

plus = element plus { CommonAtt, DefEncAtt, empty}
times = element times { CommonAtt, DefEncAtt, empty}
gcd = element gcd { CommonAtt, DefEncAtt, empty}
lcm = element lcm { CommonAtt, DefEncAtt, empty}

nary-logical.class = and | or | xor
ContExp |= nary-logical.class

and = element and { CommonAtt, DefEncAtt, empty}
or = element or { CommonAtt, DefEncAtt, empty}
xor = element xor { CommonAtt, DefEncAtt, empty}

unary-logical.class = not
ContExp |= unary-logical.class

not = element not { CommonAtt, DefEncAtt, empty}

binary-logical.class = implies | equivalent
ContExp |= binary-logical.class

implies = element implies { CommonAtt, DefEncAtt, empty}
equivalent = element equivalent { CommonAtt, DefEncAtt, empty}

quantifier.class = forall | exists
ContExp |= quantifier.class

forall = element forall { CommonAtt, DefEncAtt, empty}
exists = element exists { CommonAtt, DefEncAtt, empty}

nary-reln.class = eq | gt | lt | geq | leq
ContExp |= nary-reln.class

eq = element eq { CommonAtt, DefEncAtt, empty}
gt = element gt { CommonAtt, DefEncAtt, empty}
lt = element lt { CommonAtt, DefEncAtt, empty}
geq = element geq { CommonAtt, DefEncAtt, empty}
leq = element leq { CommonAtt, DefEncAtt, empty}

binary-reln.class = neq | approx | factorof | tendsto
ContExp |= binary-reln.class

A.2 Using the RelaxNG Schema for MathML3

313

neq = element neq { CommonAtt, DefEncAtt, empty}
approx = element approx { CommonAtt, DefEncAtt, empty}
factorof = element factorof { CommonAtt, DefEncAtt, empty}
tendsto = element tendsto { CommonAtt, DefEncAtt, type?, empty}

int.class = int
ContExp |= int.class

int = element int { CommonAtt, DefEncAtt, empty}

Differential-Operator.class = diff
ContExp |= Differential-Operator.class

diff = element diff { CommonAtt, DefEncAtt, empty}

partialdiff.class = partialdiff
ContExp |= partialdiff.class

partialdiff = element partialdiff { CommonAtt, DefEncAtt, empty}

unary-veccalc.class = divergence | grad | curl | laplacian
ContExp |= unary-veccalc.class

divergence = element divergence { CommonAtt, DefEncAtt, empty}
grad = element grad { CommonAtt, DefEncAtt, empty}
curl = element curl { CommonAtt, DefEncAtt, empty}
laplacian = element laplacian { CommonAtt, DefEncAtt, empty}

nary-setlist-constructor.class = set | \list
ContExp |= nary-setlist-constructor.class

set = element set { CommonAtt, DefEncAtt, type?, BvarQ*, DomainQ*, ContExp*}
\list = element \list { CommonAtt, DefEncAtt, order?, BvarQ*, DomainQ*, ContExp*}

nary-set.class = union | intersect | cartesianproduct
ContExp |= nary-set.class

union = element union { CommonAtt, DefEncAtt, empty}
intersect = element intersect { CommonAtt, DefEncAtt, empty}
cartesianproduct = element cartesianproduct { CommonAtt, DefEncAtt, empty}

binary-set.class = in | notin | notsubset | notprsubset | setdiff
ContExp |= binary-set.class

in = element in { CommonAtt, DefEncAtt, empty}
notin = element notin { CommonAtt, DefEncAtt, empty}
notsubset = element notsubset { CommonAtt, DefEncAtt, empty}
notprsubset = element notprsubset { CommonAtt, DefEncAtt, empty}
setdiff = element setdiff { CommonAtt, DefEncAtt, empty}

nary-set-reln.class = subset | prsubset
ContExp |= nary-set-reln.class

A Parsing MathML

314

subset = element subset { CommonAtt, DefEncAtt, empty}
prsubset = element prsubset { CommonAtt, DefEncAtt, empty}

unary-set.class = card
ContExp |= unary-set.class

card = element card { CommonAtt, DefEncAtt, empty}

sum.class = sum
ContExp |= sum.class

sum = element sum { CommonAtt, DefEncAtt, empty}

product.class = product
ContExp |= product.class

product = element product { CommonAtt, DefEncAtt, empty}

limit.class = limit
ContExp |= limit.class

limit = element limit { CommonAtt, DefEncAtt, empty}

unary-elementary.class = sin | cos | tan | sec | csc | cot | sinh | cosh | tanh |
 sech | csch | coth | arcsin | arccos | arctan | arccosh | arccot |
 arccoth | arccsc | arccsch | arcsec | arcsech | arcsinh | arctanh
ContExp |= unary-elementary.class

sin = element sin { CommonAtt, DefEncAtt, empty}
cos = element cos { CommonAtt, DefEncAtt, empty}
tan = element tan { CommonAtt, DefEncAtt, empty}
sec = element sec { CommonAtt, DefEncAtt, empty}
csc = element csc { CommonAtt, DefEncAtt, empty}
cot = element cot { CommonAtt, DefEncAtt, empty}
sinh = element sinh { CommonAtt, DefEncAtt, empty}
cosh = element cosh { CommonAtt, DefEncAtt, empty}
tanh = element tanh { CommonAtt, DefEncAtt, empty}
sech = element sech { CommonAtt, DefEncAtt, empty}
csch = element csch { CommonAtt, DefEncAtt, empty}
coth = element coth { CommonAtt, DefEncAtt, empty}
arcsin = element arcsin { CommonAtt, DefEncAtt, empty}
arccos = element arccos { CommonAtt, DefEncAtt, empty}
arctan = element arctan { CommonAtt, DefEncAtt, empty}
arccosh = element arccosh { CommonAtt, DefEncAtt, empty}
arccot = element arccot { CommonAtt, DefEncAtt, empty}
arccoth = element arccoth { CommonAtt, DefEncAtt, empty}
arccsc = element arccsc { CommonAtt, DefEncAtt, empty}
arccsch = element arccsch { CommonAtt, DefEncAtt, empty}
arcsec = element arcsec { CommonAtt, DefEncAtt, empty}
arcsech = element arcsech { CommonAtt, DefEncAtt, empty}
arcsinh = element arcsinh { CommonAtt, DefEncAtt, empty}
arctanh = element arctanh { CommonAtt, DefEncAtt, empty}

nary-stats.class = mean | sdev | variance | median | mode

A.2 Using the RelaxNG Schema for MathML3

315

ContExp |= nary-stats.class

mean = element mean { CommonAtt, DefEncAtt, empty}
sdev = element sdev { CommonAtt, DefEncAtt, empty}
variance = element variance { CommonAtt, DefEncAtt, empty}
median = element median { CommonAtt, DefEncAtt, empty}
mode = element mode { CommonAtt, DefEncAtt, empty}

nary-constructor.class = vector | matrix | matrixrow
ContExp |= nary-constructor.class

vector = element vector { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*}
matrix = element matrix { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*}
matrixrow = element matrixrow { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*}

unary-linalg.class = determinant | transpose
ContExp |= unary-linalg.class

determinant = element determinant { CommonAtt, DefEncAtt, empty}
transpose = element transpose { CommonAtt, DefEncAtt, empty}

nary-linalg.class = selector
ContExp |= nary-linalg.class

selector = element selector { CommonAtt, DefEncAtt, empty}

binary-linalg.class = vectorproduct | scalarproduct | outerproduct
ContExp |= binary-linalg.class

vectorproduct = element vectorproduct { CommonAtt, DefEncAtt, empty}
scalarproduct = element scalarproduct { CommonAtt, DefEncAtt, empty}
outerproduct = element outerproduct { CommonAtt, DefEncAtt, empty}

constant-set.class = integers | reals | rationals | naturalnumbers | complexes |
primes | emptyset

ContExp |= constant-set.class

integers = element integers { CommonAtt, DefEncAtt, empty}
reals = element reals { CommonAtt, DefEncAtt, empty}
rationals = element rationals { CommonAtt, DefEncAtt, empty}
naturalnumbers = element naturalnumbers { CommonAtt, DefEncAtt, empty}
complexes = element complexes { CommonAtt, DefEncAtt, empty}
primes = element primes { CommonAtt, DefEncAtt, empty}
emptyset = element emptyset { CommonAtt, DefEncAtt, empty}

constant-arith.class = exponentiale | imaginaryi | notanumber | true | false | pi |
eulergamma | infinity

ContExp |= constant-arith.class

exponentiale = element exponentiale { CommonAtt, DefEncAtt, empty}
imaginaryi = element imaginaryi { CommonAtt, DefEncAtt, empty}
notanumber = element notanumber { CommonAtt, DefEncAtt, empty}
true = element true { CommonAtt, DefEncAtt, empty}
false = element false { CommonAtt, DefEncAtt, empty}

A Parsing MathML

316

pi = element pi { CommonAtt, DefEncAtt, empty}
eulergamma = element eulergamma { CommonAtt, DefEncAtt, empty}
infinity = element infinity { CommonAtt, DefEncAtt, empty}

A.2.6 MathML as a module in a RelaxNG Schema

Normally, a MathML expression does not constitute an entire XML document. MathML is designed to be used
as the mathematics fragment of larger markup languages. In particular it is designed to be used as a module in
documents marked up with the XHTML family of markup languages. As RelaxNG directly supports modular
development, this is usually very easy: an XHTML+MathML schema can be specified as simply as

A RelaxNG Schema for XHTML+MathML
include "xhtml.rnc"
math = external "mathml3.rnc"
Inline.class |= math
Block.class |= math

assuming that we have access to a modular RelaxNG schema for XHTML that uses Inline.class and
Block.class to collect the content models for inline and block-level elements.

Customizing the MathML3 schema so that we can restrict the content of annotation-xml elements is similarly
simple, for example:

A RelaxNG Schema for MathML with OpenMath3 annotations
omobj = external "openmath3.rnc"
include "mathml3.rnc" {anotation-xml.model = omobj}

The MathML3 schema is organized so that subsetting to one of the sublanguages specified here is easy. To
include strict content MathML3 in a schema just include

include "mathml3-common.rnc"
include "mathml3-strict-content.rnc"

instead of include mathml3.rnc.

For details about RelaxNG grammars and modularization see [RELAX-NG] or [RelaxNGBook].

A.3 Using the MathML DTD

A.3.1 Document Validation Issues

The use of namespace prefixes creates an issue for DTD validation of documents embedding MathML. DTD
validation requires knowing the literal (possibly prefixed) element names used in the document. However, the
Namespaces in XML Recommendation [Namespaces] allows the prefix to be changed at arbitrary points in the
document, since namespace prefixes may be declared on any element.

The MathML DTD uses the strategy outlined in [Modularization] of making every element name in the DTD
be accessed by an entity reference. This means that by declaring a couple of entities to specify the prefix before
the DTD is loaded, the prefix can be chosen by a document author, and compound DTDs that include several
modules can, without changing the module DTDs, specify unique prefixes for each module to avoid clashes.

A.3.2 Attribute values in the MathML DTD

Note that the DTD is far more permissive than the Relax NG schema, many constraints on attribute values
may not be enforced using DTD syntax. For example, many attributes expect numerical values or specific

A.3 Using the MathML DTD

317

micro-syntax, but are declared as CDATA (arbitrary string) in the DTD. However, lack of enforcement of a
requirement in the DTD does not imply that the requirement is not part of the MathML language itself, or that it
will not be enforced by a particular MathML renderer. (See Section 2.3.2 Handling of Errors for a description of
how MathML renderers should respond to MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully compatible with
the text of the specification, the text should be taken as definitive if there is a contradiction. (Any contradictions
which may exist between various chapters of the text should be resolved by favoring Chapter 7 Characters,
Entities and Fonts first, then Chapter 3 Presentation Markup, Chapter 4 Content Markup, then Section 2.1
MathML Syntax and Grammar, and then other parts of the text.)

A.3.3 DOCTYPE declaration for MathML

MathML documents should be validated using the XML DTD for MathML, http://www.w3.org/Math/DTD/
mathml3/mathml3.dtd.

Documents using this DTD should contain a DOCTYPE declaration of the form:

<!DOCTYPE math
 PUBLIC "-//W3C//DTD MathML 3.0//EN"
 "http://www.w3.org/Math/DTD/mathml3/mathml3.dtd">

The URI may be changed to that of a local copy of the DTD if required.

A.4 Using the MathML XML Schema

MathML fragments can be validated using the XML Schema for MathML, located at http://www.w3.org/Math/
XMLSchema/mathml3/mathml3.xsd. The provided schema has been mechanically generated from the Relax NG
schema, it omits some constraints that can not be enforced using XSD syntax.

A.4.1 Associating the MathML schema with MathML fragments

Similarly to the DOCTYPE declaration used in documents, it is possible to link a MathML fragment to the XML
Schema, as shown below.

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1998/Math/MathML
 http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd">
...
</mml:math>

The xsi:schemaLocation attribute belongs to the XML Schema instance namespace, defined in [XMLSche-
mas]. The value of the attribute is a pair of URIs: the first is the MathML namespace URI and the second is the
location of the schema for that namespace. The second URI may be changed to that of a local copy if required.

As the XML Schema specification indicates, the use of the schemaLocation attribute is only a hint for
schema processors: validation by a MathML-aware processor can be performed without requiring that the
schemaLocation attribute be declared in the instance. Moreover, a processor can even ignore or override the
specified schema URI, if it is directed to.

A Parsing MathML

318

http://www.w3.org/Math/DTD/mathml3/mathml3.dtd
http://www.w3.org/Math/XMLSchema/mathml3/mathml3.xsd

A.5 Parsing MathML in XHTML

As noted in Section 6.4.1 Mixing MathML and XHTML The schema used for XHTML+MathML documents
extends the content model of mtext to allow inline (phrasing) html elements. The extension used by the W3C
validator uses the RelaxNG schema, however DTD and XSD versions of the grammar may be similarly exten-
ded.

A.6 Parsing MathML in HTML

See Section 6.4.3 Mixing MathML and HTML for more details of the parsing of MathML in HTML.

A.5 Parsing MathML in XHTML

319

B Media Types Registrations

This normative appendix registers three media types for MathML, "application/mathml+xml", "applica-
tion/mathml-presentation+xml" and "application/mathml-content+xml", in conformance with [RFC4288] and
W3CRegMedia. The media-types have been approved by IESG for registration with IANA as announced by
IETF and are visible on the list of application media-types.

B.1 Selection of Media Types for MathML Instances

MathML contains two distinct vocabularies. Presentation markup is for encoding visual presentation, and con-
sists of the elements defined in Chapter 3 Presentation Markup. Content markup is for encoding mathematical
meaning, and consists of the elements defined in Chapter 4 Content Markup. In addition, both the presentation
and content vocabularies contain the math, semantics, annotation and annotation-xml elements. The
MathML media types should be used as follows:

"application/mathml-presentation+xml"
MathML instances that consist solely of presentation markup.

"application/mathml-content+xml"
MathML instances that consist solely of content markup.

"application/mathml+xml"
Any valid MathML instance. Must be used for MathML instances that are a mix of presentation and
content markup, or where the composition of an instance is not known or cannot be guaranteed.

Some MathML applications may import and export only one of these two vocabularies, while others may
produce and consume each in a different way, and still others may process both without any distinction between
the two. Internally, many MathML processors favor one vocabulary, and support the other vocabulary via con-
version if at all. For example, computational software typically favors content markup while typesetting software
generally favors presentation markup. By using separate media types for MathML instances consisting solely of
presentation or solely of content markup, such processors can conduct negotiation for MathML representations
in the preferred vocabulary. For example, consider two web services offering mathematical computation services
such as a spreadsheet and a computer algebra system. Internally both prefer content markup, but by default,
both generate presentation markup for output. In the absence of media type negotiation, a likely scenario for an
exchange between two systems involves two conversions, content to presentation and back again. With negotia-
tion, the conversions are eliminated. Similarly, a client with a MathML instance in one of the vocabularies might
seek a web service that preferred that vocabulary.

MathML is commonly used in compound document settings, e.g. within HTML, where content is drawn
from a variety of sources, and processed with multiple tools. In these cases, the composition of MathML
expressions generally is not known or at least cannot be guaranteed by a user agent. Consequently, the "appli-
cation/mathml+xml" type should be used, as it may be applied to any valid MathML expression. Since most
applications involve data from untrusted sources, "application/mathml+xml" will commonly be appropriate to
use as a default type, and all MathML processors are encouraged to accept it as a fallback to the more specific
formats.

The media types described here may be applied to instances of all versions of MathML up to and including
MathML 3. MathML instances do not contain version numbers, so processors and producers must follow the
normative backward compatibility behavior described in this specification.

320

http://www.w3.org/2002/06/registering-mediatype.html
http://www.ietf.org/mail-archive/web/ietf-announce/current/msg07890.html
http://www.iana.org/assignments/media-types/application/

B.2 Media type for Generic MathML

This registration has been submitted to community review and has been approved by IESG for registration with
IANA.

Type name
application

Subtype name
mathml+xml

Required parameters
None

Optional parameters
Same as charset parameter of application/xml as specified in [RFC3023]

Encoding considerations
The encoding considerations of application/xml as specified in [RFC3023] apply.

Security considerations
As with other XML types and as noted in [RFC3023] section 10, repeated expansion of maliciously
constructed XML entities can be used to consume large amounts of memory, which may cause XML
processors in constrained environments to fail.

Several MathML elements may cause arbitrary URIs to be referenced. In this case, the security issues of
[RFC3986], section 7, should be considered.

In common with HTML, MathML documents may reference external media such as images, style sheets,
and scripting languages. Scripting languages are executable content. In this case, the security considera-
tions in the Media Type registrations for those formats shall apply. Similarly, MathML annotation elements
may contain content intended for execution or processing. In the case where the processor recognizes
and processes the additional content, or where further processing of that content is dispatched to other
processors, additional security issues potentially arise. Since the normative semantics of this specification
do not require processing of annotation elements, such issues fall outside the domain of this registration
document.

MathML may be used to describe mathematical expressions intended for evaluation in computing systems.
Because of the nature of mathematics, a seemingly innocuous expression may lead to a computation which
does not terminate or is impractically large. This introduces the risk that computational processors in
constrained environments may fail.

In addition, because of the extensibility features for MathML and of XML in general, it is possible that
"application/mathml+xml" may describe content that has security implications beyond those described
here. However, if the processor follows only the normative semantics of this specification, this content will
be outside the MathML namespace and shall be ignored.

Interoperability considerations
This specification describes processing semantics that dictate behavior that must be followed when dealing
with, among other things, unrecognized elements and attributes, both in the MathML namespace and in
other namespaces.

Because MathML is extensible, conformant "application/mathml+xml" processors must expect that con-
tent received is well-formed XML, but it cannot be guaranteed that the content is valid to a particular DTD
or Schema or that the processor will recognize all of the elements and attributes in the document.

MathML instances do not contain version numbers, so processors and producers must follow the norma-
tive backward compatibility behavior described in this specification.

In computational contexts, the result of evaluating a MathML expression is system-specific, and is not
guaranteed to be interoperable between systems.

B.2 Media type for Generic MathML

321

Published specification
This media type registration is extracted from Appendix B of the Mathematical Markup Language
(MathML) Version 3. specification.

Applications that use this media type
Web browsers, rendering engines, formula editors, typesetting software, search robots, computing systems.

Additional information
Magic number(s): see [RFC3023]

File extension(s):
.mml

Windows Clipboard Name:
MathML

Macintosh file type code(s)
MML

Macintosh Universal Type Identifier code
public.mathml conforming to public.xml

Person & email address to contact for further information
Paul Libbrecht (member-math@w3.org). See the W3C Math Working Group home page for more informa-
tion.

Intended usage
COMMON

Restrictions on usage
None

Author and Change controller
The MathML specification is the product of the World Wide Web Consortium's Math Working Group. The
W3C has change control over this specification.

B.3 Media type for Presentation MathML

This registration has been submitted to community review and has been approved by IESG for registration with
IANA.

Type name
application

Subtype name
mathml-presentation+xml

Required parameters
None

Optional parameters
Same as charset parameter of application/xml as specified in [RFC3023]

Encoding considerations
The considerations of application/xml as specified in [RFC3023] apply.

Security considerations
As with other XML types and as noted in [RFC3023] section 10, repeated expansion of maliciously
constructed XML entities can be used to consume large amounts of memory, which may cause XML
processors in constrained environments to fail.

Several MathML elements may cause arbitrary URIs to be referenced. In this case, the security issues of
[RFC3986], section 7, should be considered.

In common with HTML, MathML documents may reference external media such as images, style sheets,
and scripting languages. Scripting languages are executable content. In this case, the security considera-
tions in the Media Type registrations for those formats shall apply. Similarly, MathML annotation elements
may contain content intended for execution or processing. In the case where the processor recognizes

B Media Types Registrations

322

http://www.w3.org/Math

and processes the additional content, or where further processing of that content is dispatched to other
processors, additional security issues potentially arise. Since the normative semantics of this specification
do not require processing of annotation elements, such issues fall outside the domain of this registration
document.

MathML may be used to describe mathematical expressions intended for evaluation in computing systems.
Because of the nature of mathematics, a seemingly innocuous expression may lead to a computation which
does not terminate or is impractically large. This introduces the risk that computational processors in
constrained environments may fail.

In addition, because of the extensibility features for MathML and of XML in general, it is possible that
"application/mathml-presentation+xml" may describe content that has security implications beyond those
described here. However, if the processor follows only the normative semantics of this specification, this
content will be outside the MathML namespace and shall be ignored.

Interoperability considerations
This specification describes processing semantics that dictate behavior that must be followed when dealing
with, among other things, unrecognized elements and attributes, both in the MathML namespace and in
other namespaces.

Because MathML is extensible, conformant "application/mathml-presentation+xml" processors must
expect that content received is well-formed XML, but it cannot be guaranteed that the content is valid
to a particular DTD or Schema or that the processor will recognize all of the elements and attributes in the
document.

MathML instances do not contain version numbers, so processors and producers must follow the norma-
tive backward compatibility behavior described in this specification.

In computational contexts, the result of evaluating a MathML expression is system-specific, and is not
guaranteed to be interoperable between systems.

This specification does not record a file extension for the media type "application/mathml-
presentation+xml" because we expect tools processing files with MathML inside to have sufficient infor-
mation with the generic media-type (application/mathml+xml) while other content negotiation forms will
take advantage of specific media-types.

Published specification
This media type registration is extracted from Appendix B of the Mathematical Markup Language
(MathML) Version 3. specification.

Applications that use this media type
Web browsers, rendering engines, formula editors, typesetting software, search robots, computing systems.

Additional information
Magic number(s): see [RFC3023]

File extension(s):
None

Windows Clipboard Name:
MathML Presentation

Macintosh file type code(s)
MMLp

Macintosh Universal Type Identifier code
public.mathml.presentation conforming to public.mathml (described above) conforming to
public.xml

Person & email address to contact for further information
Paul Libbrecht (member-math@w3.org). See the W3C Math Working Group home page for more informa-
tion.

Intended usage
COMMON

B.3 Media type for Presentation MathML

323

http://www.w3.org/Math

Restrictions on usage
None

Author and Change controller
The MathML specification is the product of the World Wide Web Consortium's Math Working Group. The
W3C has change control over this specification.

B.4 Media type for Content MathML

This registration has been submitted to community review and has been approved by IESG for registration with
IANA.

Type name
application

Subtype name
mathml-content+xml

Required parameters
None

Optional parameters
Same as charset parameter of application/xml as specified in [RFC3023]

Encoding considerations
The encoding considerations of application/xml as specified in [RFC3023] apply.

Security considerations
As with other XML types and as noted in [RFC3023] section 10, repeated expansion of maliciously
constructed XML entities can be used to consume large amounts of memory, which may cause XML
processors in constrained environments to fail.

Several MathML elements may cause arbitrary URIs to be referenced. In this case, the security issues of
[RFC3986], section 7, should be considered.

In common with HTML, MathML documents may reference external media such as images, style sheets,
and scripting languages. Scripting languages are executable content. In this case, the security considera-
tions in the Media Type registrations for those formats shall apply. Similarly, MathML annotation elements
may contain content intended for execution or processing. In the case where the processor recognizes
and processes the additional content, or where further processing of that content is dispatched to other
processors, additional security issues potentially arise. Since the normative semantics of this specification
do not require processing of annotation elements, such issues fall outside the domain of this registration
document.

MathML may be used to describe mathematical expressions intended for evaluation in computing systems.
Because of the nature of mathematics, a seemingly innocuous expression may lead to a computation which
does not terminate or is impractically large. This introduces the risk that computational processors in
constrained environments may fail.

In addition, because of the extensibility features for MathML and of XML in general, it is possible
that "application/mathml-content+xml" may describe content that has security implications beyond those
described here. However, if the processor follows only the normative semantics of this specification, this
content will be outside the MathML namespace and shall be ignored.

Interoperability considerations
This specification describes processing semantics that dictate behavior that must be followed when dealing
with, among other things, unrecognized elements and attributes, both in the MathML namespace and in
other namespaces.

Because MathML is extensible, conformant "application/mathml-content+xml" processors must expect
that content received is well-formed XML, but it cannot be guaranteed that the content is valid to a

B Media Types Registrations

324

particular DTD or Schema or that the processor will recognize all of the elements and attributes in the
document.

MathML instances do not contain version numbers, so processors and producers must follow the norma-
tive backward compatibility behavior described in this specification.

In computational contexts, the result of evaluating a MathML expression is system-specific, and is not
guaranteed to be interoperable between systems.

This specification does not record a file extension for the media type "application/mathml-content+xml"
because we expect tools processing files with MathML inside to have sufficient information with the
generic media-type (application/mathml+xml) while other content negotiation forms will take advantage
of specific media-types.

Published specification
This media type registration is extracted from Appendix B of the Mathematical Markup Language
(MathML) Version 3. specification.

Applications that use this media type
Formula editors, search robots, computing systems.

Additional information
Magic number(s): see [RFC3023]

File extension(s):
None

Windows Clipboard Name:
MathML Content

Macintosh file type code(s)
MMLc

Macintosh Universal Type Identifier code
public.mathml.content conforming to public.mathml (described above) conforming to
public.xml

Person & email address to contact for further information
Paul Libbrecht (member-math@w3.org). See the W3C Math Working Group home page for more informa-
tion.

Intended usage
COMMON

Restrictions on usage
None

Author and Change controller
The MathML specification is the product of the World Wide Web Consortium's Math Working Group. The
W3C has change control over this specification.

B.4 Media type for Content MathML

325

http://www.w3.org/Math

C Operator Dictionary (Non-Normative)

The following table gives the suggested dictionary of rendering properties for operators, fences, separators, and
accents in MathML, all of which are represented by mo elements. For brevity, all such elements will be called
simply "operators" in this Appendix.

C.1 Indexing of the operator dictionary

Note that the dictionary is indexed not just by the element content, but by the element content and form
attribute value, together. Operators with more than one possible form have more than one entry. The MathML
specification describes how the renderer chooses ("infers") which form to use when no form attribute is given;
see Section 3.2.5.7.2 Default value of the form attribute.

Having made that choice, or with the form attribute explicitly specified in the <mo> element's start tag, the
MathML renderer uses the remaining attributes from the dictionary entry for the appropriate single form of that
operator, ignoring the entries for the other possible forms.

In the table below, all non-ASCII characters are represented by XML-style hexadecimal numeric character
references. The choice of markup (character data, numeric character reference or named entity reference) for a
given character in MathML has no effect on its rendering.

C.2 Format of operator dictionary entries

Each row of the table is indexed as described above by the both the character (given by code point and Unicode
Name) and the value of the form attribute. The fourth column gives the priority which as described in Section
3.3.1 Horizontally Group Sub-Expressions <mrow>), is significant for the proper grouping of sub-expressions
using <mrow>. The rule described there is especially relevant to the automatic generation of MathML by
conversion from other formats for displayed mathematics, such as TEX, which do not always specify how
sub-expressions nest.

The length valued attributes such as lspace are given explicitly in the following columns. Boolean valued
attributes such as stretchy are specified together in the final Properties column by listing the attribute name
if its value should be set to true by the dictionary. Finally some rarely used non-boolean properties are shown in
the Properties column together with a value, for example linebreakstyle=after.

Any attribute not listed for some entry has its default value, which is given in parentheses in the table of
attributes in Section 3.2.5 Operator, Fence, Separator or Accent <mo>.

((left parenthesis prefix 1 0 0 fence, stretchy

could be expressed as an mo element by:

<mo form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em">
(</mo>

(note the whitespace added around the content for readability; Such whitespace will be ignored by a MathML
system, as described in Section 2.1.7 Collapsing Whitespace in Input.

This entry means that, for MathML renderers which use this suggested operator dictionary, giving the element
<mo form="prefix"> (</mo> alone, or simply <mo> (</mo> in a position for which form="prefix"
would be inferred (see below), is equivalent to giving the element with all attributes as shown above.

326

In some versions of this specification, the rows of the table may be reordered by clicking on a heading in the top
row, to cause the table to be ordered by that column.

C.3 Notes on lspace and rspace attributes

The values for lspace and rspace given here range from 0 to 7, they are given numerically in order to save
space in the table, the values should be taken as referring to the named mathematical spaces, as follows.

Table Entry Named Space Default Length

0 0 em
1 veryverythinmathspace 1/18 em
2 verythinmathspace 2/18 em
3 thinmathspace 3/18 em
4 mediummathspace 4/18 em
5 thickmathspace 5/18 em
6 verythickmathspace 6/18 em
7 veryverythickmathspace 7/18 em

For the invisible operators whose content is ⁢ or ⁡, it is suggested that
MathML renderers choose spacing in a context-sensitive way (which is an exception to the static values
given in the following table). For <mo>⁡</mo>, the total spacing ("lspace"+"rspace") in
expressions such as "sin x" (where the right operand doesn't start with a fence) should be greater than zero;
for <mo>⁢</mo>, the total spacing should be greater than zero when both operands (or the
nearest tokens on either side, if on the baseline) are identifiers displayed in a non-slanted font (i.e.. under the
suggested rules, when both operands are multi-character identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.e. when scriptlevel is
greater than 0; see Section 3.3.4 Style Change <mstyle>), as is the case in TEX.

C.4 Operator dictionary entries

Character Glyph Name form priority lspace rspace Properties

‘ ‘ left single quotation mark prefix 10 0 0 fence
’ ’ right single quotation mark postfix 10 0 0 fence
“ “ left double quotation mark prefix 10 0 0 fence
” ” right double quotation mark postfix 10 0 0 fence

((left parenthesis prefix 20 0 0 fence, stretchy, symmetric
)) right parenthesis postfix 20 0 0 fence, stretchy, symmetric
[[left square bracket prefix 20 0 0 fence, stretchy, symmetric
]] right square bracket postfix 20 0 0 fence, stretchy, symmetric
{ { left curly bracket prefix 20 0 0 fence, stretchy, symmetric
| | vertical line prefix 20 0 0 fence, stretchy, symmetric
| | vertical line postfix 20 0 0 fence, stretchy, symmetric
|| || multiple character operator: || prefix 20 0 0 fence, stretchy, symmetric
|| || multiple character operator: || postfix 20 0 0 fence, stretchy, symmetric
||| ||| multiple character operator: ||| prefix 20 0 0 fence, stretchy, symmetric
||| ||| multiple character operator: ||| postfix 20 0 0 fence, stretchy, symmetric
} } right curly bracket postfix 20 0 0 fence, stretchy, symmetric

‖ ‖ double vertical line prefix 20 0 0 fence, stretchy

C.3 Notes on lspace and rspace attributes

327

Character Glyph Name form priority lspace rspace Properties

‖ ‖ double vertical line postfix 20 0 0 fence, stretchy
⌈ ⌈ left ceiling prefix 20 0 0 fence, stretchy, symmetric
⌉ ⌉ right ceiling postfix 20 0 0 fence, stretchy, symmetric
⌊ ⌊ left floor prefix 20 0 0 fence, stretchy, symmetric
⌋ ⌋ right floor postfix 20 0 0 fence, stretchy, symmetric
〈 〈 left-pointing angle bracket prefix 20 0 0 fence, stretchy, symmetric
〉 〉 right-pointing angle bracket postfix 20 0 0 fence, stretchy, symmetric

❲ ❲ light left tortoise shell bracket
ornament

prefix 20 0 0 fence, stretchy, symmetric

❳ ❳ light right tortoise shell bracket
ornament

postfix 20 0 0 fence, stretchy, symmetric

⟦ ⟦ mathematical left white square
bracket

prefix 20 0 0 fence, stretchy, symmetric

⟧ ⟧ mathematical right white square
bracket

postfix 20 0 0 fence, stretchy, symmetric

⟨ ⟨ mathematical left angle bracket prefix 20 0 0 fence, stretchy, symmetric
⟩ ⟩ mathematical right angle bracket postfix 20 0 0 fence, stretchy, symmetric

⟪ ⟪ mathematical left double angle
bracket

prefix 20 0 0 fence, stretchy, symmetric

⟫ ⟫ mathematical right double angle
bracket

postfix 20 0 0 fence, stretchy, symmetric

⟬ ⟬ mathematical left white tortoise
shell bracket

prefix 20 0 0 fence, stretchy, symmetric

⟭ ⟭ mathematical right white
tortoise shell bracket

postfix 20 0 0 fence, stretchy, symmetric

⟮ ⟮ mathematical left flattened
parenthesis

prefix 20 0 0 fence, stretchy, symmetric

⟯ ⟯ mathematical right flattened
parenthesis

postfix 20 0 0 fence, stretchy, symmetric

⦀ ⦀ triple vertical bar delimiter prefix 20 0 0 fence, stretchy
⦀ ⦀ triple vertical bar delimiter postfix 20 0 0 fence, stretchy
⦃ ⦃ left white curly bracket prefix 20 0 0 fence, stretchy, symmetric
⦄ ⦄ right white curly bracket postfix 20 0 0 fence, stretchy, symmetric
⦅ ⦅ left white parenthesis prefix 20 0 0 fence, stretchy, symmetric
⦆ ⦆ right white parenthesis postfix 20 0 0 fence, stretchy, symmetric
⦇ ⦇ z notation left image bracket prefix 20 0 0 fence, stretchy, symmetric
⦈ ⦈ z notation right image bracket postfix 20 0 0 fence, stretchy, symmetric
⦉ ⦉ z notation left binding bracket prefix 20 0 0 fence, stretchy, symmetric
⦊ ⦊ z notation right binding bracket postfix 20 0 0 fence, stretchy, symmetric

⦋ ⦋ left square bracket with
underbar

prefix 20 0 0 fence, stretchy, symmetric

⦌ ⦌ right square bracket with
underbar

postfix 20 0 0 fence, stretchy, symmetric

⦍ ⦍ left square bracket with tick in
top corner

prefix 20 0 0 fence, stretchy, symmetric

⦎ ⦎ right square bracket with tick in
bottom corner

postfix 20 0 0 fence, stretchy, symmetric

⦏ ⦏ left square bracket with tick in
bottom corner

prefix 20 0 0 fence, stretchy, symmetric

⦐ ⦐ right square bracket with tick in
top corner

postfix 20 0 0 fence, stretchy, symmetric

⦑ ⦑ left angle bracket with dot prefix 20 0 0 fence, stretchy, symmetric
⦒ ⦒ right angle bracket with dot postfix 20 0 0 fence, stretchy, symmetric
⦓ ⦓ left arc less-than bracket prefix 20 0 0 fence, stretchy, symmetric
⦔ ⦔ right arc greater-than bracket postfix 20 0 0 fence, stretchy, symmetric

⦕ ⦕ double left arc greater-than
bracket

prefix 20 0 0 fence, stretchy, symmetric

C Operator Dictionary (Non-Normative)

328

Character Glyph Name form priority lspace rspace Properties

⦖ ⦖ double right arc less-than
bracket

postfix 20 0 0 fence, stretchy, symmetric

⦗ ⦗ left black tortoise shell bracket prefix 20 0 0 fence, stretchy, symmetric
⦘ ⦘ right black tortoise shell bracket postfix 20 0 0 fence, stretchy, symmetric

⧼ ⧼ left-pointing curved angle
bracket

prefix 20 0 0 fence, stretchy, symmetric

⧽ ⧽ right-pointing curved angle
bracket

postfix 20 0 0 fence, stretchy, symmetric

; ; semicolon infix 30 0 3
separator,
linebreakstyle=after

, , comma infix 40 0 3
separator,
linebreakstyle=after

⁣ invisible separator infix 40 0 0
separator,
linebreakstyle=after

∴ ∴ therefore infix 70 5 5
∵ ∵ because infix 70 5 5

-> -> multiple character operator: -> infix 90 5 5
.. .. multiple character operator: .. postfix 100 0 0
... ... multiple character operator: ... postfix 100 0 0
: : colon infix 100 1 2

϶ ϶ greek reversed lunate epsilon
symbol

infix 110 5 5

… … horizontal ellipsis infix 150 0 0
⋮ ⋮ vertical ellipsis infix 150 5 5
⋯ ⋯ midline horizontal ellipsis infix 150 0 0
⋱ ⋱ down right diagonal ellipsis infix 150 5 5
∋ ∋ contains as member infix 160 5 5
⊢ ⊢ right tack infix 170 5 5
⊣ ⊣ left tack infix 170 5 5
⊤ ⊤ down tack infix 170 5 5
⊨ ⊨ true infix 170 5 5
⊩ ⊩ forces infix 170 5 5
⊬ ⊬ does not prove infix 170 5 5
⊭ ⊭ not true infix 170 5 5
⊮ ⊮ does not force infix 170 5 5

⊯ ⊯ negated double vertical bar
double right turnstile

infix 170 5 5

∨ ∨ logical or infix 190 4 4
&& && multiple character operator: && infix 200 4 4

∧ ∧ logical and infix 200 4 4
∀ ∀ for all prefix 230 2 1
∃ ∃ there exists prefix 230 2 1
∄ ∄ there does not exist prefix 230 2 1
∁ ∁ complement infix 240 1 2
∈ ∈ element of infix 240 5 5
∉ ∉ not an element of infix 240 5 5
∌ ∌ does not contain as member infix 240 5 5
⊂ ⊂ subset of infix 240 5 5

⊂⃒ ⊂⃒ subset of with vertical line infix 240 5 5
⊃ ⊃ superset of infix 240 5 5

⊃⃒ ⊃⃒ superset of with vertical line infix 240 5 5

C.4 Operator dictionary entries

329

Character Glyph Name form priority lspace rspace Properties

⊄ ⊄ not a subset of infix 240 5 5
⊅ ⊅ not a superset of infix 240 5 5
⊆ ⊆ subset of or equal to infix 240 5 5
⊇ ⊇ superset of or equal to infix 240 5 5
⊈ ⊈ neither a subset of nor equal to infix 240 5 5
⊉ ⊉ neither a superset of nor equal to infix 240 5 5
⊊ ⊊ subset of with not equal to infix 240 5 5
⊋ ⊋ superset of with not equal to infix 240 5 5

<= <= multiple character operator: <= infix 241 5 5
≤ ≤ less-than or equal to infix 241 5 5
≥ ≥ greater-than or equal to infix 242 5 5

> > greater-than sign infix 243 5 5
>= >= multiple character operator: >= infix 243 5 5

≯ ≯ not greater-than infix 244 5 5
< < less-than sign infix 245 5 5

≮ ≮ not less-than infix 246 5 5
≈ ≈ almost equal to infix 247 5 5
∼ ∼ tilde operator infix 250 5 5
≉ ≉ not almost equal to infix 250 5 5
≢ ≢ not identical to infix 252 5 5
≠ ≠ not equal to infix 255 5 5

!= != multiple character operator: != infix 260 4 4
*= *= multiple character operator: *= infix 260 4 4
+= += multiple character operator: += infix 260 4 4
-= -= multiple character operator: -= infix 260 4 4
/= /= multiple character operator: /= infix 260 4 4
:= := multiple character operator: := infix 260 4 4
= = equals sign infix 260 5 5

== == multiple character operator: == infix 260 4 4
∝ ∝ proportional to infix 260 5 5
∤ ∤ does not divide infix 260 5 5
∥ ∥ parallel to infix 260 5 5
∦ ∦ not parallel to infix 260 5 5
≁ ≁ not tilde infix 260 5 5
≃ ≃ asymptotically equal to infix 260 5 5
≄ ≄ not asymptotically equal to infix 260 5 5
≅ ≅ approximately equal to infix 260 5 5

≆ ≆ approximately but not actually
equal to

infix 260 5 5

≇ ≇ neither approximately nor
actually equal to

infix 260 5 5

≍ ≍ equivalent to infix 260 5 5
≔ ≔ colon equals infix 260 5 5
≗ ≗ ring equal to infix 260 5 5
≙ ≙ estimates infix 260 5 5
≚ ≚ equiangular to infix 260 5 5
≛ ≛ star equals infix 260 5 5
≜ ≜ delta equal to infix 260 5 5
≟ ≟ questioned equal to infix 260 5 5
≡ ≡ identical to infix 260 5 5

C Operator Dictionary (Non-Normative)

330

Character Glyph Name form priority lspace rspace Properties

≨ ≨ less-than but not equal to infix 260 5 5
≩ ≩ greater-than but not equal to infix 260 5 5
≪ ≪ much less-than infix 260 5 5

≪̸ ≪̸ much less than with slash infix 260 5 5
≫ ≫ much greater-than infix 260 5 5

≫̸ ≫̸ much greater than with slash infix 260 5 5
≭ ≭ not equivalent to infix 260 5 5
≰ ≰ neither less-than nor equal to infix 260 5 5
≱ ≱ neither greater-than nor equal to infix 260 5 5
≺ ≺ precedes infix 260 5 5
≻ ≻ succeeds infix 260 5 5
≼ ≼ precedes or equal to infix 260 5 5
≽ ≽ succeeds or equal to infix 260 5 5
⊀ ⊀ does not precede infix 260 5 5
⊁ ⊁ does not succeed infix 260 5 5
⊥ ⊥ up tack infix 260 5 5
⊴ ⊴ normal subgroup of or equal to infix 260 5 5

⊵ ⊵ contains as normal subgroup or
equal to

infix 260 5 5

⋉ ⋉ left normal factor semidirect
product

infix 260 4 4

⋊ ⋊ right normal factor semidirect
product

infix 260 4 4

⋋ ⋋ left semidirect product infix 260 4 4
⋌ ⋌ right semidirect product infix 260 4 4
⋔ ⋔ pitchfork infix 260 5 5
⋖ ⋖ less-than with dot infix 260 5 5
⋗ ⋗ greater-than with dot infix 260 5 5
⋘ ⋘ very much less-than infix 260 5 5
⋙ ⋙ very much greater-than infix 260 5 5
⋪ ⋪ not normal subgroup of infix 260 5 5

⋫ ⋫ does not contain as normal
subgroup

infix 260 5 5

⋬ ⋬ not normal subgroup of or equal
to

infix 260 5 5

⋭ ⋭ does not contain as normal
subgroup or equal

infix 260 5 5

■ ■ black square infix 260 3 3
□ □ white square infix 260 3 3
▪ ▪ black small square infix 260 3 3
▫ ▫ white small square infix 260 3 3
▭ ▭ white rectangle infix 260 3 3
▮ ▮ black vertical rectangle infix 260 3 3
▯ ▯ white vertical rectangle infix 260 3 3
▰ ▰ black parallelogram infix 260 3 3
▱ ▱ white parallelogram infix 260 3 3
△ △ white up-pointing triangle infix 260 4 4
▴ ▴ black up-pointing small triangle infix 260 4 4
▵ ▵ white up-pointing small triangle infix 260 4 4
▶ ▶ black right-pointing triangle infix 260 4 4
▷ ▷ white right-pointing triangle infix 260 4 4

C.4 Operator dictionary entries

331

Character Glyph Name form priority lspace rspace Properties

▸ ▸ black right-pointing small
triangle

infix 260 4 4

▹ ▹ white right-pointing small
triangle

infix 260 4 4

▼ ▼ black down-pointing triangle infix 260 4 4
▽ ▽ white down-pointing triangle infix 260 4 4

▾ ▾ black down-pointing small
triangle

infix 260 4 4

▿ ▿ white down-pointing small
triangle

infix 260 4 4

◀ ◀ black left-pointing triangle infix 260 4 4
◁ ◁ white left-pointing triangle infix 260 4 4
◂ ◂ black left-pointing small triangle infix 260 4 4

◃ ◃ white left-pointing small
triangle

infix 260 4 4

◄ ◄ black left-pointing pointer infix 260 4 4
◅ ◅ white left-pointing pointer infix 260 4 4
◆ ◆ black diamond infix 260 4 4
◇ ◇ white diamond infix 260 4 4

◈ ◈ white diamond containing black
small diamond

infix 260 4 4

◉ ◉ fisheye infix 260 4 4
◌ ◌ dotted circle infix 260 4 4
◍ ◍ circle with vertical fill infix 260 4 4
◎ ◎ bullseye infix 260 4 4
● ● black circle infix 260 4 4
◖ ◖ left half black circle infix 260 4 4
◗ ◗ right half black circle infix 260 4 4
◦ ◦ white bullet infix 260 4 4
⧀ ⧀ circled less-than infix 260 5 5
⧁ ⧁ circled greater-than infix 260 5 5
⧣ ⧣ equals sign and slanted parallel infix 260 5 5

⧤ ⧤ equals sign and slanted parallel
with tilde above

infix 260 5 5

⧥ ⧥ identical to and slanted parallel infix 260 5 5
⧦ ⧦ gleich stark infix 260 5 5
⧳ ⧳ error-barred black circle infix 260 3 3

⪇ ⪇ less-than and single-line not
equal to

infix 260 5 5

⪈ ⪈ greater-than and single-line not
equal to

infix 260 5 5

⪯ ⪯ precedes above single-line
equals sign

infix 260 5 5

⪯̸ ⪯̸ precedes above single-line
equals sign with slash

infix 260 5 5

⪰ ⪰ succeeds above single-line
equals sign

infix 260 5 5

⪰̸ ⪰̸ succeeds above single-line
equals sign with slash

infix 260 5 5

⁄ ⁄ fraction slash infix 265 4 4 stretchy
∆ ∆ increment infix 265 3 3
∊ ∊ small element of infix 265 5 5
∍ ∍ small contains as member infix 265 5 5
∎ ∎ end of proof infix 265 3 3
∕ ∕ division slash infix 265 4 4 stretchy

C Operator Dictionary (Non-Normative)

332

Character Glyph Name form priority lspace rspace Properties

∗ ∗ asterisk operator infix 265 4 4
∘ ∘ ring operator infix 265 4 4
∙ ∙ bullet operator infix 265 4 4
∟ ∟ right angle infix 265 5 5
∣ ∣ divides infix 265 5 5
∶ ∶ ratio infix 265 5 5
∷ ∷ proportion infix 265 5 5
∸ ∸ dot minus infix 265 4 4
∹ ∹ excess infix 265 5 5
∺ ∺ geometric proportion infix 265 4 4
∻ ∻ homothetic infix 265 5 5
∽ ∽ reversed tilde infix 265 5 5

∽̱ ∽̱ reversed tilde with underline infix 265 3 3
∾ ∾ inverted lazy s infix 265 5 5
∿ ∿ sine wave infix 265 3 3
≂ ≂ minus tilde infix 265 5 5

≂̸ ≂̸ minus tilde with slash infix 265 5 5
≊ ≊ almost equal or equal to infix 265 5 5
≋ ≋ triple tilde infix 265 5 5
≌ ≌ all equal to infix 265 5 5
≎ ≎ geometrically equivalent to infix 265 5 5

≎̸ ≎̸ geometrically equivalent to with
slash

infix 265 5 5

≏ ≏ difference between infix 265 5 5
≏̸ ≏̸ difference between with slash infix 265 5 5

≐ ≐ approaches the limit infix 265 5 5
≑ ≑ geometrically equal to infix 265 5 5

≒ ≒ approximately equal to or the
image of

infix 265 5 5

≓ ≓ image of or approximately equal
to

infix 265 5 5

≕ ≕ equals colon infix 265 5 5
≖ ≖ ring in equal to infix 265 5 5
≘ ≘ corresponds to infix 265 5 5
≝ ≝ equal to by definition infix 265 5 5
≞ ≞ measured by infix 265 5 5
≣ ≣ strictly equivalent to infix 265 5 5
≦ ≦ less-than over equal to infix 265 5 5

≦̸ ≦̸ less-than over equal to with
slash

infix 265 5 5

≧ ≧ greater-than over equal to infix 265 5 5
≬ ≬ between infix 265 5 5
≲ ≲ less-than or equivalent to infix 265 5 5
≳ ≳ greater-than or equivalent to infix 265 5 5

≴ ≴ neither less-than nor equivalent
to

infix 265 5 5

≵ ≵ neither greater-than nor
equivalent to

infix 265 5 5

≶ ≶ less-than or greater-than infix 265 5 5
≷ ≷ greater-than or less-than infix 265 5 5

≸ ≸ neither less-than nor greater-
than

infix 265 5 5

C.4 Operator dictionary entries

333

Character Glyph Name form priority lspace rspace Properties

≹ ≹ neither greater-than nor less-
than

infix 265 5 5

≾ ≾ precedes or equivalent to infix 265 5 5
≿ ≿ succeeds or equivalent to infix 265 5 5

≿̸ ≿̸ succeeds or equivalent to with
slash

infix 265 5 5

⊌ ⊌ multiset infix 265 4 4
⊍ ⊍ multiset multiplication infix 265 4 4
⊎ ⊎ multiset union infix 265 4 4
⊏ ⊏ square image of infix 265 5 5

⊏̸ ⊏̸ square image of with slash infix 265 5 5
⊐ ⊐ square original of infix 265 5 5

⊐̸ ⊐̸ square original of with slash infix 265 5 5
⊑ ⊑ square image of or equal to infix 265 5 5
⊒ ⊒ square original of or equal to infix 265 5 5
⊓ ⊓ square cap infix 265 4 4
⊔ ⊔ square cup infix 265 4 4
⊚ ⊚ circled ring operator infix 265 4 4
⊛ ⊛ circled asterisk operator infix 265 4 4
⊜ ⊜ circled equals infix 265 4 4
⊝ ⊝ circled dash infix 265 4 4
⊦ ⊦ assertion infix 265 5 5
⊧ ⊧ models infix 265 5 5
⊪ ⊪ triple vertical bar right turnstile infix 265 5 5

⊫ ⊫ double vertical bar double right
turnstile

infix 265 5 5

⊰ ⊰ precedes under relation infix 265 5 5
⊱ ⊱ succeeds under relation infix 265 5 5
⊲ ⊲ normal subgroup of infix 265 5 5
⊳ ⊳ contains as normal subgroup infix 265 5 5
⊶ ⊶ original of infix 265 5 5
⊷ ⊷ image of infix 265 5 5
⊹ ⊹ hermitian conjugate matrix infix 265 5 5
⊺ ⊺ intercalate infix 265 4 4
⊻ ⊻ xor infix 265 4 4
⊼ ⊼ nand infix 265 4 4
⊽ ⊽ nor infix 265 4 4
⊾ ⊾ right angle with arc infix 265 3 3
⊿ ⊿ right triangle infix 265 3 3
⋄ ⋄ diamond operator infix 265 4 4
⋆ ⋆ star operator infix 265 4 4
⋇ ⋇ division times infix 265 4 4
⋈ ⋈ bowtie infix 265 5 5
⋍ ⋍ reversed tilde equals infix 265 5 5
⋎ ⋎ curly logical or infix 265 4 4
⋏ ⋏ curly logical and infix 265 4 4
⋐ ⋐ double subset infix 265 5 5
⋑ ⋑ double superset infix 265 5 5
⋒ ⋒ double intersection infix 265 4 4
⋓ ⋓ double union infix 265 4 4

C Operator Dictionary (Non-Normative)

334

Character Glyph Name form priority lspace rspace Properties

⋕ ⋕ equal and parallel to infix 265 5 5
⋚ ⋚ less-than equal to or greater-than infix 265 5 5
⋛ ⋛ greater-than equal to or less-than infix 265 5 5
⋜ ⋜ equal to or less-than infix 265 5 5
⋝ ⋝ equal to or greater-than infix 265 5 5
⋞ ⋞ equal to or precedes infix 265 5 5
⋟ ⋟ equal to or succeeds infix 265 5 5
⋠ ⋠ does not precede or equal infix 265 5 5
⋡ ⋡ does not succeed or equal infix 265 5 5
⋢ ⋢ not square image of or equal to infix 265 5 5
⋣ ⋣ not square original of or equal to infix 265 5 5
⋤ ⋤ square image of or not equal to infix 265 5 5
⋥ ⋥ square original of or not equal to infix 265 5 5
⋦ ⋦ less-than but not equivalent to infix 265 5 5

⋧ ⋧ greater-than but not equivalent
to

infix 265 5 5

⋨ ⋨ precedes but not equivalent to infix 265 5 5
⋩ ⋩ succeeds but not equivalent to infix 265 5 5
⋰ ⋰ up right diagonal ellipsis infix 265 5 5

⋲ ⋲ element of with long horizontal
stroke

infix 265 5 5

⋳ ⋳ element of with vertical bar at
end of horizontal stroke

infix 265 5 5

⋴ ⋴ small element of with vertical
bar at end of horizontal stroke

infix 265 5 5

⋵ ⋵ element of with dot above infix 265 5 5
⋶ ⋶ element of with overbar infix 265 5 5
⋷ ⋷ small element of with overbar infix 265 5 5
⋸ ⋸ element of with underbar infix 265 5 5

⋹ ⋹ element of with two horizontal
strokes

infix 265 5 5

⋺ ⋺ contains with long horizontal
stroke

infix 265 5 5

⋻ ⋻ contains with vertical bar at end
of horizontal stroke

infix 265 5 5

⋼ ⋼ small contains with vertical bar
at end of horizontal stroke

infix 265 5 5

⋽ ⋽ contains with overbar infix 265 5 5
⋾ ⋾ small contains with overbar infix 265 5 5
⋿ ⋿ z notation bag membership infix 265 5 5
▲ ▲ black up-pointing triangle infix 265 4 4
❘ ❘ light vertical bar infix 265 5 5
⦁ ⦁ z notation spot infix 265 3 3
⦂ ⦂ z notation type colon infix 265 3 3
⦠ ⦠ spherical angle opening left infix 265 3 3
⦡ ⦡ spherical angle opening up infix 265 3 3
⦢ ⦢ turned angle infix 265 3 3
⦣ ⦣ reversed angle infix 265 3 3
⦤ ⦤ angle with underbar infix 265 3 3
⦥ ⦥ reversed angle with underbar infix 265 3 3
⦦ ⦦ oblique angle opening up infix 265 3 3
⦧ ⦧ oblique angle opening down infix 265 3 3

C.4 Operator dictionary entries

335

Character Glyph Name form priority lspace rspace Properties

⦨ ⦨ measured angle with open arm
ending in arrow pointing up and
right

infix 265 3 3

⦩ ⦩ measured angle with open arm
ending in arrow pointing up and
left

infix 265 3 3

⦪ ⦪ measured angle with open arm
ending in arrow pointing down
and right

infix 265 3 3

⦫ ⦫ measured angle with open arm
ending in arrow pointing down
and left

infix 265 3 3

⦬ ⦬ measured angle with open arm
ending in arrow pointing right
and up

infix 265 3 3

⦭ ⦭ measured angle with open arm
ending in arrow pointing left
and up

infix 265 3 3

⦮ ⦮ measured angle with open arm
ending in arrow pointing right
and down

infix 265 3 3

⦯ ⦯ measured angle with open arm
ending in arrow pointing left
and down

infix 265 3 3

⦰ ⦰ reversed empty set infix 265 3 3
⦱ ⦱ empty set with overbar infix 265 3 3

⦲ ⦲ empty set with small circle
above

infix 265 3 3

⦳ ⦳ empty set with right arrow
above

infix 265 3 3

⦴ ⦴ empty set with left arrow above infix 265 3 3
⦵ ⦵ circle with horizontal bar infix 265 3 3
⦶ ⦶ circled vertical bar infix 265 4 4
⦷ ⦷ circled parallel infix 265 4 4
⦸ ⦸ circled reverse solidus infix 265 4 4
⦹ ⦹ circled perpendicular infix 265 4 4

⦺ ⦺ circle divided by horizontal bar
and top half divided by vertical
bar

infix 265 4 4

⦻ ⦻ circle with superimposed x infix 265 4 4

⦼ ⦼ circled anticlockwise-rotated
division sign

infix 265 4 4

⦽ ⦽ up arrow through circle infix 265 4 4
⦾ ⦾ circled white bullet infix 265 4 4
⦿ ⦿ circled bullet infix 265 4 4

⧂ ⧂ circle with small circle to the
right

infix 265 3 3

⧃ ⧃ circle with two horizontal
strokes to the right

infix 265 3 3

⧄ ⧄ squared rising diagonal slash infix 265 4 4
⧅ ⧅ squared falling diagonal slash infix 265 4 4
⧆ ⧆ squared asterisk infix 265 4 4
⧇ ⧇ squared small circle infix 265 4 4
⧈ ⧈ squared square infix 265 4 4
⧉ ⧉ two joined squares infix 265 3 3
⧊ ⧊ triangle with dot above infix 265 3 3
⧋ ⧋ triangle with underbar infix 265 3 3
⧌ ⧌ s in triangle infix 265 3 3

C Operator Dictionary (Non-Normative)

336

Character Glyph Name form priority lspace rspace Properties

⧍ ⧍ triangle with serifs at bottom infix 265 3 3
⧎ ⧎ right triangle above left triangle infix 265 5 5
⧏ ⧏ left triangle beside vertical bar infix 265 5 5

⧏̸ ⧏̸ left triangle beside vertical bar
with slash

infix 265 5 5

⧐ ⧐ vertical bar beside right triangle infix 265 5 5

⧐̸ ⧐̸ vertical bar beside right triangle
with slash

infix 265 5 5

⧑ ⧑ bowtie with left half black infix 265 5 5
⧒ ⧒ bowtie with right half black infix 265 5 5
⧓ ⧓ black bowtie infix 265 5 5
⧔ ⧔ times with left half black infix 265 5 5
⧕ ⧕ times with right half black infix 265 5 5
⧖ ⧖ white hourglass infix 265 4 4
⧗ ⧗ black hourglass infix 265 4 4
⧘ ⧘ left wiggly fence infix 265 3 3
⧙ ⧙ right wiggly fence infix 265 3 3
⧛ ⧛ right double wiggly fence infix 265 3 3
⧜ ⧜ incomplete infinity infix 265 3 3
⧝ ⧝ tie over infinity infix 265 3 3
⧞ ⧞ infinity negated with vertical bar infix 265 5 5
⧠ ⧠ square with contoured outline infix 265 3 3
⧡ ⧡ increases as infix 265 5 5
⧢ ⧢ shuffle product infix 265 4 4
⧧ ⧧ thermodynamic infix 265 3 3

⧨ ⧨ down-pointing triangle with left
half black

infix 265 3 3

⧩ ⧩ down-pointing triangle with
right half black

infix 265 3 3

⧪ ⧪ black diamond with down arrow infix 265 3 3
⧫ ⧫ black lozenge infix 265 3 3
⧬ ⧬ white circle with down arrow infix 265 3 3
⧭ ⧭ black circle with down arrow infix 265 3 3
⧮ ⧮ error-barred white square infix 265 3 3
⧰ ⧰ error-barred white diamond infix 265 3 3
⧱ ⧱ error-barred black diamond infix 265 3 3
⧲ ⧲ error-barred white circle infix 265 3 3
⧵ ⧵ reverse solidus operator infix 265 4 4
⧶ ⧶ solidus with overbar infix 265 4 4

⧷ ⧷ reverse solidus with horizontal
stroke

infix 265 4 4

⧸ ⧸ big solidus infix 265 3 3
⧹ ⧹ big reverse solidus infix 265 3 3
⧺ ⧺ double plus infix 265 3 3
⧻ ⧻ triple plus infix 265 3 3
⧾ ⧾ tiny infix 265 4 4
⧿ ⧿ miny infix 265 4 4
⨝ ⨝ join infix 265 3 3
⨞ ⨞ large left triangle operator infix 265 3 3
⨟ ⨟ z notation schema composition infix 265 3 3
⨠ ⨠ z notation schema piping infix 265 3 3

C.4 Operator dictionary entries

337

Character Glyph Name form priority lspace rspace Properties

⨡ ⨡ z notation schema projection infix 265 3 3
⨢ ⨢ plus sign with small circle above infix 265 4 4

⨣ ⨣ plus sign with circumflex accent
above

infix 265 4 4

⨤ ⨤ plus sign with tilde above infix 265 4 4
⨥ ⨥ plus sign with dot below infix 265 4 4
⨦ ⨦ plus sign with tilde below infix 265 4 4
⨧ ⨧ plus sign with subscript two infix 265 4 4
⨨ ⨨ plus sign with black triangle infix 265 4 4
⨩ ⨩ minus sign with comma above infix 265 4 4
⨪ ⨪ minus sign with dot below infix 265 4 4
⨫ ⨫ minus sign with falling dots infix 265 4 4
⨬ ⨬ minus sign with rising dots infix 265 4 4
⨭ ⨭ plus sign in left half circle infix 265 4 4
⨮ ⨮ plus sign in right half circle infix 265 4 4

⨰ ⨰ multiplication sign with dot
above

infix 265 4 4

⨱ ⨱ multiplication sign with
underbar

infix 265 4 4

⨲ ⨲ semidirect product with bottom
closed

infix 265 4 4

⨳ ⨳ smash product infix 265 4 4

⨴ ⨴ multiplication sign in left half
circle

infix 265 4 4

⨵ ⨵ multiplication sign in right half
circle

infix 265 4 4

⨶ ⨶ circled multiplication sign with
circumflex accent

infix 265 4 4

⨷ ⨷ multiplication sign in double
circle

infix 265 4 4

⨸ ⨸ circled division sign infix 265 4 4
⨹ ⨹ plus sign in triangle infix 265 4 4
⨺ ⨺ minus sign in triangle infix 265 4 4
⨻ ⨻ multiplication sign in triangle infix 265 4 4
⨼ ⨼ interior product infix 265 4 4
⨽ ⨽ righthand interior product infix 265 4 4

⨾ ⨾ z notation relational
composition

infix 265 4 4

⩀ ⩀ intersection with dot infix 265 4 4
⩁ ⩁ union with minus sign infix 265 4 4
⩂ ⩂ union with overbar infix 265 4 4
⩃ ⩃ intersection with overbar infix 265 4 4
⩄ ⩄ intersection with logical and infix 265 4 4
⩅ ⩅ union with logical or infix 265 4 4
⩆ ⩆ union above intersection infix 265 4 4
⩇ ⩇ intersection above union infix 265 4 4

⩈ ⩈ union above bar above
intersection

infix 265 4 4

⩉ ⩉ intersection above bar above
union

infix 265 4 4

⩊ ⩊ union beside and joined with
union

infix 265 4 4

⩋ ⩋ intersection beside and joined
with intersection

infix 265 4 4

⩌ ⩌ closed union with serifs infix 265 4 4

C Operator Dictionary (Non-Normative)

338

Character Glyph Name form priority lspace rspace Properties

⩍ ⩍ closed intersection with serifs infix 265 4 4
⩎ ⩎ double square intersection infix 265 4 4
⩏ ⩏ double square union infix 265 4 4

⩐ ⩐ closed union with serifs and
smash product

infix 265 4 4

⩑ ⩑ logical and with dot above infix 265 4 4
⩒ ⩒ logical or with dot above infix 265 4 4
⩓ ⩓ double logical and infix 265 4 4
⩔ ⩔ double logical or infix 265 4 4
⩕ ⩕ two intersecting logical and infix 265 4 4
⩖ ⩖ two intersecting logical or infix 265 4 4
⩗ ⩗ sloping large or infix 265 4 4
⩘ ⩘ sloping large and infix 265 4 4

⩙ ⩙ logical or overlapping logical
and

infix 265 5 5

⩚ ⩚ logical and with middle stem infix 265 4 4
⩛ ⩛ logical or with middle stem infix 265 4 4
⩜ ⩜ logical and with horizontal dash infix 265 4 4
⩝ ⩝ logical or with horizontal dash infix 265 4 4
⩞ ⩞ logical and with double overbar infix 265 4 4
⩟ ⩟ logical and with underbar infix 265 4 4

⩠ ⩠ logical and with double
underbar

infix 265 4 4

⩡ ⩡ small vee with underbar infix 265 4 4
⩢ ⩢ logical or with double overbar infix 265 4 4
⩣ ⩣ logical or with double underbar infix 265 4 4
⩤ ⩤ z notation domain antirestriction infix 265 4 4
⩥ ⩥ z notation range antirestriction infix 265 4 4
⩦ ⩦ equals sign with dot below infix 265 5 5
⩧ ⩧ identical with dot above infix 265 5 5

⩨ ⩨ triple horizontal bar with double
vertical stroke

infix 265 5 5

⩩ ⩩ triple horizontal bar with triple
vertical stroke

infix 265 5 5

⩪ ⩪ tilde operator with dot above infix 265 5 5
⩫ ⩫ tilde operator with rising dots infix 265 5 5
⩬ ⩬ similar minus similar infix 265 5 5
⩭ ⩭ congruent with dot above infix 265 5 5
⩮ ⩮ equals with asterisk infix 265 5 5

⩯ ⩯ almost equal to with circumflex
accent

infix 265 5 5

⩰ ⩰ approximately equal or equal to infix 265 5 5
⩱ ⩱ equals sign above plus sign infix 265 4 4
⩲ ⩲ plus sign above equals sign infix 265 4 4
⩳ ⩳ equals sign above tilde operator infix 265 5 5
⩴ ⩴ double colon equal infix 265 5 5
⩵ ⩵ two consecutive equals signs infix 265 5 5
⩶ ⩶ three consecutive equals signs infix 265 5 5

⩷ ⩷ equals sign with two dots above
and two dots below

infix 265 5 5

⩸ ⩸ equivalent with four dots above infix 265 5 5
⩹ ⩹ less-than with circle inside infix 265 5 5

C.4 Operator dictionary entries

339

Character Glyph Name form priority lspace rspace Properties

⩺ ⩺ greater-than with circle inside infix 265 5 5

⩻ ⩻ less-than with question mark
above

infix 265 5 5

⩼ ⩼ greater-than with question mark
above

infix 265 5 5

⩽ ⩽ less-than or slanted equal to infix 265 5 5

⩽̸ ⩽̸ less-than or slanted equal to
with slash

infix 265 5 5

⩾ ⩾ greater-than or slanted equal to infix 265 5 5

⩾̸ ⩾̸ greater-than or slanted equal to
with slash

infix 265 5 5

⩿ ⩿ less-than or slanted equal to
with dot inside

infix 265 5 5

⪀ ⪀ greater-than or slanted equal to
with dot inside

infix 265 5 5

⪁ ⪁ less-than or slanted equal to
with dot above

infix 265 5 5

⪂ ⪂ greater-than or slanted equal to
with dot above

infix 265 5 5

⪃ ⪃ less-than or slanted equal to
with dot above right

infix 265 5 5

⪄ ⪄ greater-than or slanted equal to
with dot above left

infix 265 5 5

⪅ ⪅ less-than or approximate infix 265 5 5
⪆ ⪆ greater-than or approximate infix 265 5 5
⪉ ⪉ less-than and not approximate infix 265 5 5

⪊ ⪊ greater-than and not
approximate

infix 265 5 5

⪋ ⪋ less-than above double-line
equal above greater-than

infix 265 5 5

⪌ ⪌ greater-than above double-line
equal above less-than

infix 265 5 5

⪍ ⪍ less-than above similar or equal infix 265 5 5

⪎ ⪎ greater-than above similar or
equal

infix 265 5 5

⪏ ⪏ less-than above similar above
greater-than

infix 265 5 5

⪐ ⪐ greater-than above similar above
less-than

infix 265 5 5

⪑ ⪑ less-than above greater-than
above double-line equal

infix 265 5 5

⪒ ⪒ greater-than above less-than
above double-line equal

infix 265 5 5

⪓ ⪓ less-than above slanted equal
above greater-than above slanted
equal

infix 265 5 5

⪔ ⪔ greater-than above slanted equal
above less-than above slanted
equal

infix 265 5 5

⪕ ⪕ slanted equal to or less-than infix 265 5 5
⪖ ⪖ slanted equal to or greater-than infix 265 5 5

⪗ ⪗ slanted equal to or less-than
with dot inside

infix 265 5 5

⪘ ⪘ slanted equal to or greater-than
with dot inside

infix 265 5 5

⪙ ⪙ double-line equal to or less-than infix 265 5 5

⪚ ⪚ double-line equal to or greater-
than

infix 265 5 5

⪛ ⪛ double-line slanted equal to or
less-than

infix 265 5 5

C Operator Dictionary (Non-Normative)

340

Character Glyph Name form priority lspace rspace Properties

⪜ ⪜ double-line slanted equal to or
greater-than

infix 265 5 5

⪝ ⪝ similar or less-than infix 265 5 5
⪞ ⪞ similar or greater-than infix 265 5 5

⪟ ⪟ similar above less-than above
equals sign

infix 265 5 5

⪠ ⪠ similar above greater-than above
equals sign

infix 265 5 5

⪡ ⪡ double nested less-than infix 265 5 5

⪡̸ ⪡̸ double nested less-than with
slash

infix 265 5 5

⪢ ⪢ double nested greater-than infix 265 5 5

⪢̸ ⪢̸ double nested greater-than with
slash

infix 265 5 5

⪣ ⪣ double nested less-than with
underbar

infix 265 5 5

⪤ ⪤ greater-than overlapping less-
than

infix 265 5 5

⪥ ⪥ greater-than beside less-than infix 265 5 5
⪦ ⪦ less-than closed by curve infix 265 5 5
⪧ ⪧ greater-than closed by curve infix 265 5 5

⪨ ⪨ less-than closed by curve above
slanted equal

infix 265 5 5

⪩ ⪩ greater-than closed by curve
above slanted equal

infix 265 5 5

⪪ ⪪ smaller than infix 265 5 5
⪫ ⪫ larger than infix 265 5 5
⪬ ⪬ smaller than or equal to infix 265 5 5
⪭ ⪭ larger than or equal to infix 265 5 5
⪮ ⪮ equals sign with bumpy above infix 265 5 5

⪱ ⪱ precedes above single-line not
equal to

infix 265 5 5

⪲ ⪲ succeeds above single-line not
equal to

infix 265 5 5

⪳ ⪳ precedes above equals sign infix 265 5 5
⪴ ⪴ succeeds above equals sign infix 265 5 5
⪵ ⪵ precedes above not equal to infix 265 5 5
⪶ ⪶ succeeds above not equal to infix 265 5 5
⪷ ⪷ precedes above almost equal to infix 265 5 5
⪸ ⪸ succeeds above almost equal to infix 265 5 5

⪹ ⪹ precedes above not almost equal
to

infix 265 5 5

⪺ ⪺ succeeds above not almost equal
to

infix 265 5 5

⪻ ⪻ double precedes infix 265 5 5
⪼ ⪼ double succeeds infix 265 5 5
⪽ ⪽ subset with dot infix 265 5 5
⪾ ⪾ superset with dot infix 265 5 5
⪿ ⪿ subset with plus sign below infix 265 5 5
⫀ ⫀ superset with plus sign below infix 265 5 5

⫁ ⫁ subset with multiplication sign
below

infix 265 5 5

⫂ ⫂ superset with multiplication sign
below

infix 265 5 5

⫃ ⫃ subset of or equal to with dot
above

infix 265 5 5

C.4 Operator dictionary entries

341

Character Glyph Name form priority lspace rspace Properties

⫄ ⫄ superset of or equal to with dot
above

infix 265 5 5

⫅ ⫅ subset of above equals sign infix 265 5 5
⫆ ⫆ superset of above equals sign infix 265 5 5
⫇ ⫇ subset of above tilde operator infix 265 5 5
⫈ ⫈ superset of above tilde operator infix 265 5 5
⫉ ⫉ subset of above almost equal to infix 265 5 5

⫊ ⫊ superset of above almost equal
to

infix 265 5 5

⫋ ⫋ subset of above not equal to infix 265 5 5
⫌ ⫌ superset of above not equal to infix 265 5 5
⫍ ⫍ square left open box operator infix 265 5 5
⫎ ⫎ square right open box operator infix 265 5 5
⫏ ⫏ closed subset infix 265 5 5
⫐ ⫐ closed superset infix 265 5 5
⫑ ⫑ closed subset or equal to infix 265 5 5
⫒ ⫒ closed superset or equal to infix 265 5 5
⫓ ⫓ subset above superset infix 265 5 5
⫔ ⫔ superset above subset infix 265 5 5
⫕ ⫕ subset above subset infix 265 5 5
⫖ ⫖ superset above superset infix 265 5 5
⫗ ⫗ superset beside subset infix 265 5 5

⫘ ⫘ superset beside and joined by
dash with subset

infix 265 5 5

⫙ ⫙ element of opening downwards infix 265 5 5
⫚ ⫚ pitchfork with tee top infix 265 5 5
⫛ ⫛ transversal intersection infix 265 5 5
⫝ ⫝ nonforking infix 265 5 5

⫝̸ ⫝̸ nonforking with slash infix 265 5 5
⫞ ⫞ short left tack infix 265 5 5
⫟ ⫟ short down tack infix 265 5 5
⫠ ⫠ short up tack infix 265 5 5
⫡ ⫡ perpendicular with s infix 265 5 5
⫢ ⫢ vertical bar triple right turnstile infix 265 5 5
⫣ ⫣ double vertical bar left turnstile infix 265 5 5
⫤ ⫤ vertical bar double left turnstile infix 265 5 5

⫥ ⫥ double vertical bar double left
turnstile

infix 265 5 5

⫦ ⫦ long dash from left member of
double vertical

infix 265 5 5

⫧ ⫧ short down tack with overbar infix 265 5 5
⫨ ⫨ short up tack with underbar infix 265 5 5

⫩ ⫩ short up tack above short down
tack

infix 265 5 5

⫪ ⫪ double down tack infix 265 5 5
⫫ ⫫ double up tack infix 265 5 5
⫬ ⫬ double stroke not sign infix 265 5 5
⫭ ⫭ reversed double stroke not sign infix 265 5 5

⫮ ⫮ does not divide with reversed
negation slash

infix 265 5 5

⫯ ⫯ vertical line with circle above infix 265 5 5
⫰ ⫰ vertical line with circle below infix 265 5 5

C Operator Dictionary (Non-Normative)

342

Character Glyph Name form priority lspace rspace Properties

⫱ ⫱ down tack with circle below infix 265 5 5
⫲ ⫲ parallel with horizontal stroke infix 265 5 5
⫳ ⫳ parallel with tilde operator infix 265 5 5
⫴ ⫴ triple vertical bar binary relation infix 265 4 4

⫵ ⫵ triple vertical bar with
horizontal stroke

infix 265 4 4

⫶ ⫶ triple colon operator infix 265 4 4
⫷ ⫷ triple nested less-than infix 265 5 5
⫸ ⫸ triple nested greater-than infix 265 5 5

⫹ ⫹ double-line slanted less-than or
equal to

infix 265 5 5

⫺ ⫺ double-line slanted greater-than
or equal to

infix 265 5 5

⫻ ⫻ triple solidus binary relation infix 265 4 4
⫽ ⫽ double solidus operator infix 265 4 4
⫾ ⫾ white vertical bar infix 265 3 3

| | vertical line infix 270 2 2 fence, stretchy, symmetric
|| || multiple character operator: || infix 270 2 2 fence, stretchy, symmetric
||| ||| multiple character operator: ||| infix 270 2 2 fence, stretchy, symmetric

← ← leftwards arrow infix 270 5 5 stretchy, accent
↑ ↑ upwards arrow infix 270 5 5 stretchy
→ → rightwards arrow infix 270 5 5 stretchy, accent
↓ ↓ downwards arrow infix 270 5 5 stretchy
↔ ↔ left right arrow infix 270 5 5 stretchy, accent
↕ ↕ up down arrow infix 270 5 5 stretchy
↖ ↖ north west arrow infix 270 5 5 stretchy
↗ ↗ north east arrow infix 270 5 5 stretchy
↘ ↘ south east arrow infix 270 5 5 stretchy
↙ ↙ south west arrow infix 270 5 5 stretchy
↚ ↚ leftwards arrow with stroke infix 270 5 5 accent
↛ ↛ rightwards arrow with stroke infix 270 5 5 accent
↜ ↜ leftwards wave arrow infix 270 5 5 stretchy, accent
↝ ↝ rightwards wave arrow infix 270 5 5 stretchy, accent
↞ ↞ leftwards two headed arrow infix 270 5 5 stretchy, accent
↟ ↟ upwards two headed arrow infix 270 5 5 stretchy, accent
↠ ↠ rightwards two headed arrow infix 270 5 5 stretchy, accent
↡ ↡ downwards two headed arrow infix 270 5 5 stretchy
↢ ↢ leftwards arrow with tail infix 270 5 5 stretchy, accent
↣ ↣ rightwards arrow with tail infix 270 5 5 stretchy, accent
↤ ↤ leftwards arrow from bar infix 270 5 5 stretchy, accent
↥ ↥ upwards arrow from bar infix 270 5 5 stretchy
↦ ↦ rightwards arrow from bar infix 270 5 5 stretchy, accent
↧ ↧ downwards arrow from bar infix 270 5 5 stretchy
↨ ↨ up down arrow with base infix 270 5 5 stretchy
↩ ↩ leftwards arrow with hook infix 270 5 5 stretchy, accent
↪ ↪ rightwards arrow with hook infix 270 5 5 stretchy, accent
↫ ↫ leftwards arrow with loop infix 270 5 5 stretchy, accent
↬ ↬ rightwards arrow with loop infix 270 5 5 stretchy, accent
↭ ↭ left right wave arrow infix 270 5 5 stretchy, accent
↮ ↮ left right arrow with stroke infix 270 5 5 accent

C.4 Operator dictionary entries

343

Character Glyph Name form priority lspace rspace Properties

↯ ↯ downwards zigzag arrow infix 270 5 5 stretchy

↰ ↰ upwards arrow with tip
leftwards

infix 270 5 5 stretchy

↱ ↱ upwards arrow with tip
rightwards

infix 270 5 5 stretchy

↲ ↲ downwards arrow with tip
leftwards

infix 270 5 5 stretchy

↳ ↳ downwards arrow with tip
rightwards

infix 270 5 5 stretchy

↴ ↴ rightwards arrow with corner
downwards

infix 270 5 5 stretchy

↵ ↵ downwards arrow with corner
leftwards

infix 270 5 5 stretchy

↶ ↶ anticlockwise top semicircle
arrow

infix 270 5 5 accent

↷ ↷ clockwise top semicircle arrow infix 270 5 5 accent
↸ ↸ north west arrow to long bar infix 270 5 5

↹ ↹ leftwards arrow to bar over
rightwards arrow to bar

infix 270 5 5 stretchy, accent

↺ ↺ anticlockwise open circle arrow infix 270 5 5
↻ ↻ clockwise open circle arrow infix 270 5 5

↼ ↼ leftwards harpoon with barb
upwards

infix 270 5 5 stretchy, accent

↽ ↽ leftwards harpoon with barb
downwards

infix 270 5 5 stretchy, accent

↾ ↾ upwards harpoon with barb
rightwards

infix 270 5 5 stretchy

↿ ↿ upwards harpoon with barb
leftwards

infix 270 5 5 stretchy

⇀ ⇀ rightwards harpoon with barb
upwards

infix 270 5 5 stretchy, accent

⇁ ⇁ rightwards harpoon with barb
downwards

infix 270 5 5 stretchy, accent

⇂ ⇂ downwards harpoon with barb
rightwards

infix 270 5 5 stretchy

⇃ ⇃ downwards harpoon with barb
leftwards

infix 270 5 5 stretchy

⇄ ⇄ rightwards arrow over leftwards
arrow

infix 270 5 5 stretchy, accent

⇅ ⇅ upwards arrow leftwards of
downwards arrow

infix 270 5 5 stretchy

⇆ ⇆ leftwards arrow over rightwards
arrow

infix 270 5 5 stretchy, accent

⇇ ⇇ leftwards paired arrows infix 270 5 5 stretchy, accent
⇈ ⇈ upwards paired arrows infix 270 5 5 stretchy
⇉ ⇉ rightwards paired arrows infix 270 5 5 stretchy, accent
⇊ ⇊ downwards paired arrows infix 270 5 5 stretchy

⇋ ⇋ leftwards harpoon over
rightwards harpoon

infix 270 5 5 stretchy, accent

⇌ ⇌ rightwards harpoon over
leftwards harpoon

infix 270 5 5 stretchy, accent

⇍ ⇍ leftwards double arrow with
stroke

infix 270 5 5 accent

⇎ ⇎ left right double arrow with
stroke

infix 270 5 5 accent

⇏ ⇏ rightwards double arrow with
stroke

infix 270 5 5 accent

⇐ ⇐ leftwards double arrow infix 270 5 5 stretchy, accent
⇑ ⇑ upwards double arrow infix 270 5 5 stretchy
⇒ ⇒ rightwards double arrow infix 270 5 5 stretchy, accent

C Operator Dictionary (Non-Normative)

344

Character Glyph Name form priority lspace rspace Properties

⇓ ⇓ downwards double arrow infix 270 5 5 stretchy
⇔ ⇔ left right double arrow infix 270 5 5 stretchy, accent
⇕ ⇕ up down double arrow infix 270 5 5 stretchy
⇖ ⇖ north west double arrow infix 270 5 5 stretchy
⇗ ⇗ north east double arrow infix 270 5 5 stretchy
⇘ ⇘ south east double arrow infix 270 5 5 stretchy
⇙ ⇙ south west double arrow infix 270 5 5 stretchy
⇚ ⇚ leftwards triple arrow infix 270 5 5 stretchy, accent
⇛ ⇛ rightwards triple arrow infix 270 5 5 stretchy, accent
⇜ ⇜ leftwards squiggle arrow infix 270 5 5 stretchy, accent
⇝ ⇝ rightwards squiggle arrow infix 270 5 5 stretchy, accent

⇞ ⇞ upwards arrow with double
stroke

infix 270 5 5

⇟ ⇟ downwards arrow with double
stroke

infix 270 5 5

⇠ ⇠ leftwards dashed arrow infix 270 5 5 stretchy, accent
⇡ ⇡ upwards dashed arrow infix 270 5 5 stretchy
⇢ ⇢ rightwards dashed arrow infix 270 5 5 stretchy, accent
⇣ ⇣ downwards dashed arrow infix 270 5 5 stretchy
⇤ ⇤ leftwards arrow to bar infix 270 5 5 stretchy, accent
⇥ ⇥ rightwards arrow to bar infix 270 5 5 stretchy, accent
⇦ ⇦ leftwards white arrow infix 270 5 5 stretchy, accent
⇧ ⇧ upwards white arrow infix 270 5 5 stretchy
⇨ ⇨ rightwards white arrow infix 270 5 5 stretchy, accent
⇩ ⇩ downwards white arrow infix 270 5 5 stretchy
⇪ ⇪ upwards white arrow from bar infix 270 5 5 stretchy

⇫ ⇫ upwards white arrow on
pedestal

infix 270 5 5 stretchy

⇬ ⇬ upwards white arrow on
pedestal with horizontal bar

infix 270 5 5 stretchy

⇭ ⇭ upwards white arrow on
pedestal with vertical bar

infix 270 5 5 stretchy

⇮ ⇮ upwards white double arrow infix 270 5 5 stretchy

⇯ ⇯ upwards white double arrow on
pedestal

infix 270 5 5 stretchy

⇰ ⇰ rightwards white arrow from
wall

infix 270 5 5 stretchy, accent

⇱ ⇱ north west arrow to corner infix 270 5 5
⇲ ⇲ south east arrow to corner infix 270 5 5
⇳ ⇳ up down white arrow infix 270 5 5 stretchy
⇴ ⇴ right arrow with small circle infix 270 5 5 accent

⇵ ⇵ downwards arrow leftwards of
upwards arrow

infix 270 5 5 stretchy

⇶ ⇶ three rightwards arrows infix 270 5 5 stretchy, accent

⇷ ⇷ leftwards arrow with vertical
stroke

infix 270 5 5 accent

⇸ ⇸ rightwards arrow with vertical
stroke

infix 270 5 5 accent

⇹ ⇹ left right arrow with vertical
stroke

infix 270 5 5 accent

⇺ ⇺ leftwards arrow with double
vertical stroke

infix 270 5 5 accent

⇻ ⇻ rightwards arrow with double
vertical stroke

infix 270 5 5 accent

C.4 Operator dictionary entries

345

Character Glyph Name form priority lspace rspace Properties

⇼ ⇼ left right arrow with double
vertical stroke

infix 270 5 5 accent

⇽ ⇽ leftwards open-headed arrow infix 270 5 5 stretchy, accent
⇾ ⇾ rightwards open-headed arrow infix 270 5 5 stretchy, accent
⇿ ⇿ left right open-headed arrow infix 270 5 5 stretchy, accent
⊸ ⊸ multimap infix 270 5 5
⟰ ⟰ upwards quadruple arrow infix 270 5 5 stretchy
⟱ ⟱ downwards quadruple arrow infix 270 5 5 stretchy
⟵ ⟵ long leftwards arrow infix 270 5 5 stretchy, accent
⟶ ⟶ long rightwards arrow infix 270 5 5 stretchy, accent
⟷ ⟷ long left right arrow infix 270 5 5 stretchy, accent
⟸ ⟸ long leftwards double arrow infix 270 5 5 stretchy, accent
⟹ ⟹ long rightwards double arrow infix 270 5 5 stretchy, accent
⟺ ⟺ long left right double arrow infix 270 5 5 stretchy, accent
⟻ ⟻ long leftwards arrow from bar infix 270 5 5 stretchy, accent
⟼ ⟼ long rightwards arrow from bar infix 270 5 5 stretchy, accent

⟽ ⟽ long leftwards double arrow
from bar

infix 270 5 5 stretchy, accent

⟾ ⟾ long rightwards double arrow
from bar

infix 270 5 5 stretchy, accent

⟿ ⟿ long rightwards squiggle arrow infix 270 5 5 stretchy, accent

⤀ ⤀ rightwards two-headed arrow
with vertical stroke

infix 270 5 5 accent

⤁ ⤁ rightwards two-headed arrow
with double vertical stroke

infix 270 5 5 accent

⤂ ⤂ leftwards double arrow with
vertical stroke

infix 270 5 5 accent

⤃ ⤃ rightwards double arrow with
vertical stroke

infix 270 5 5 accent

⤄ ⤄ left right double arrow with
vertical stroke

infix 270 5 5 accent

⤅ ⤅ rightwards two-headed arrow
from bar

infix 270 5 5 accent

⤆ ⤆ leftwards double arrow from bar infix 270 5 5 accent

⤇ ⤇ rightwards double arrow from
bar

infix 270 5 5 accent

⤈ ⤈ downwards arrow with
horizontal stroke

infix 270 5 5

⤉ ⤉ upwards arrow with horizontal
stroke

infix 270 5 5

⤊ ⤊ upwards triple arrow infix 270 5 5 stretchy
⤋ ⤋ downwards triple arrow infix 270 5 5 stretchy
⤌ ⤌ leftwards double dash arrow infix 270 5 5 stretchy, accent
⤍ ⤍ rightwards double dash arrow infix 270 5 5 stretchy, accent
⤎ ⤎ leftwards triple dash arrow infix 270 5 5 stretchy, accent
⤏ ⤏ rightwards triple dash arrow infix 270 5 5 stretchy, accent

⤐ ⤐ rightwards two-headed triple
dash arrow

infix 270 5 5 stretchy, accent

⤑ ⤑ rightwards arrow with dotted
stem

infix 270 5 5 accent

⤒ ⤒ upwards arrow to bar infix 270 5 5 stretchy
⤓ ⤓ downwards arrow to bar infix 270 5 5 stretchy

⤔ ⤔ rightwards arrow with tail with
vertical stroke

infix 270 5 5 accent

⤕ ⤕ rightwards arrow with tail with
double vertical stroke

infix 270 5 5 accent

C Operator Dictionary (Non-Normative)

346

Character Glyph Name form priority lspace rspace Properties

⤖ ⤖ rightwards two-headed arrow
with tail

infix 270 5 5 accent

⤗ ⤗ rightwards two-headed arrow
with tail with vertical stroke

infix 270 5 5 accent

⤘ ⤘ rightwards two-headed arrow
with tail with double vertical
stroke

infix 270 5 5 accent

⤙ ⤙ leftwards arrow-tail infix 270 5 5 accent
⤚ ⤚ rightwards arrow-tail infix 270 5 5 accent
⤛ ⤛ leftwards double arrow-tail infix 270 5 5 accent
⤜ ⤜ rightwards double arrow-tail infix 270 5 5 accent

⤝ ⤝ leftwards arrow to black
diamond

infix 270 5 5 accent

⤞ ⤞ rightwards arrow to black
diamond

infix 270 5 5 accent

⤟ ⤟ leftwards arrow from bar to
black diamond

infix 270 5 5 accent

⤠ ⤠ rightwards arrow from bar to
black diamond

infix 270 5 5 accent

⤡ ⤡ north west and south east arrow infix 270 5 5 stretchy
⤢ ⤢ north east and south west arrow infix 270 5 5 stretchy
⤣ ⤣ north west arrow with hook infix 270 5 5
⤤ ⤤ north east arrow with hook infix 270 5 5
⤥ ⤥ south east arrow with hook infix 270 5 5
⤦ ⤦ south west arrow with hook infix 270 5 5

⤧ ⤧ north west arrow and north east
arrow

infix 270 5 5

⤨ ⤨ north east arrow and south east
arrow

infix 270 5 5

⤩ ⤩ south east arrow and south west
arrow

infix 270 5 5

⤪ ⤪ south west arrow and north west
arrow

infix 270 5 5

⤫ ⤫ rising diagonal crossing falling
diagonal

infix 270 5 5

⤬ ⤬ falling diagonal crossing rising
diagonal

infix 270 5 5

⤭ ⤭ south east arrow crossing north
east arrow

infix 270 5 5

⤮ ⤮ north east arrow crossing south
east arrow

infix 270 5 5

⤯ ⤯ falling diagonal crossing north
east arrow

infix 270 5 5

⤰ ⤰ rising diagonal crossing south
east arrow

infix 270 5 5

⤱ ⤱ north east arrow crossing north
west arrow

infix 270 5 5

⤲ ⤲ north west arrow crossing north
east arrow

infix 270 5 5

⤳ ⤳ wave arrow pointing directly
right

infix 270 5 5 accent

⤴ ⤴ arrow pointing rightwards then
curving upwards

infix 270 5 5

⤵ ⤵ arrow pointing rightwards then
curving downwards

infix 270 5 5

⤶ ⤶ arrow pointing downwards then
curving leftwards

infix 270 5 5

⤷ ⤷ arrow pointing downwards then
curving rightwards

infix 270 5 5

⤸ ⤸ right-side arc clockwise arrow infix 270 5 5

C.4 Operator dictionary entries

347

Character Glyph Name form priority lspace rspace Properties

⤹ ⤹ left-side arc anticlockwise arrow infix 270 5 5
⤺ ⤺ top arc anticlockwise arrow infix 270 5 5 accent
⤻ ⤻ bottom arc anticlockwise arrow infix 270 5 5 accent

⤼ ⤼ top arc clockwise arrow with
minus

infix 270 5 5 accent

⤽ ⤽ top arc anticlockwise arrow with
plus

infix 270 5 5 accent

⤾ ⤾ lower right semicircular
clockwise arrow

infix 270 5 5

⤿ ⤿ lower left semicircular
anticlockwise arrow

infix 270 5 5

⥀ ⥀ anticlockwise closed circle
arrow

infix 270 5 5

⥁ ⥁ clockwise closed circle arrow infix 270 5 5

⥂ ⥂ rightwards arrow above short
leftwards arrow

infix 270 5 5 accent

⥃ ⥃ leftwards arrow above short
rightwards arrow

infix 270 5 5 accent

⥄ ⥄ short rightwards arrow above
leftwards arrow

infix 270 5 5 accent

⥅ ⥅ rightwards arrow with plus
below

infix 270 5 5 accent

⥆ ⥆ leftwards arrow with plus below infix 270 5 5 accent
⥇ ⥇ rightwards arrow through x infix 270 5 5 accent

⥈ ⥈ left right arrow through small
circle

infix 270 5 5 accent

⥉ ⥉ upwards two-headed arrow from
small circle

infix 270 5 5

⥊ ⥊ left barb up right barb down
harpoon

infix 270 5 5 accent

⥋ ⥋ left barb down right barb up
harpoon

infix 270 5 5 accent

⥌ ⥌ up barb right down barb left
harpoon

infix 270 5 5

⥍ ⥍ up barb left down barb right
harpoon

infix 270 5 5

⥎ ⥎ left barb up right barb up
harpoon

infix 270 5 5 stretchy, accent

⥏ ⥏ up barb right down barb right
harpoon

infix 270 5 5 stretchy

⥐ ⥐ left barb down right barb down
harpoon

infix 270 5 5 stretchy, accent

⥑ ⥑ up barb left down barb left
harpoon

infix 270 5 5 stretchy

⥒ ⥒ leftwards harpoon with barb up
to bar

infix 270 5 5 stretchy, accent

⥓ ⥓ rightwards harpoon with barb up
to bar

infix 270 5 5 stretchy, accent

⥔ ⥔ upwards harpoon with barb right
to bar

infix 270 5 5 stretchy

⥕ ⥕ downwards harpoon with barb
right to bar

infix 270 5 5 stretchy

⥖ ⥖ leftwards harpoon with barb
down to bar

infix 270 5 5 stretchy

⥗ ⥗ rightwards harpoon with barb
down to bar

infix 270 5 5 stretchy

⥘ ⥘ upwards harpoon with barb left
to bar

infix 270 5 5 stretchy

⥙ ⥙ downwards harpoon with barb
left to bar

infix 270 5 5 stretchy

⥚ ⥚ leftwards harpoon with barb up
from bar

infix 270 5 5 stretchy, accent

C Operator Dictionary (Non-Normative)

348

Character Glyph Name form priority lspace rspace Properties

⥛ ⥛ rightwards harpoon with barb up
from bar

infix 270 5 5 stretchy, accent

⥜ ⥜ upwards harpoon with barb right
from bar

infix 270 5 5 stretchy

⥝ ⥝ downwards harpoon with barb
right from bar

infix 270 5 5 stretchy

⥞ ⥞ leftwards harpoon with barb
down from bar

infix 270 5 5 stretchy, accent

⥟ ⥟ rightwards harpoon with barb
down from bar

infix 270 5 5 stretchy, accent

⥠ ⥠ upwards harpoon with barb left
from bar

infix 270 5 5 stretchy

⥡ ⥡ downwards harpoon with barb
left from bar

infix 270 5 5 stretchy

⥢ ⥢ leftwards harpoon with barb up
above leftwards harpoon with
barb down

infix 270 5 5 accent

⥣ ⥣ upwards harpoon with barb left
beside upwards harpoon with
barb right

infix 270 5 5

⥤ ⥤ rightwards harpoon with barb up
above rightwards harpoon with
barb down

infix 270 5 5 accent

⥥ ⥥ downwards harpoon with barb
left beside downwards harpoon
with barb right

infix 270 5 5

⥦ ⥦ leftwards harpoon with barb up
above rightwards harpoon with
barb up

infix 270 5 5 accent

⥧ ⥧ leftwards harpoon with barb
down above rightwards harpoon
with barb down

infix 270 5 5 accent

⥨ ⥨ rightwards harpoon with barb up
above leftwards harpoon with
barb up

infix 270 5 5 accent

⥩ ⥩ rightwards harpoon with barb
down above leftwards harpoon
with barb down

infix 270 5 5 accent

⥪ ⥪ leftwards harpoon with barb up
above long dash

infix 270 5 5 accent

⥫ ⥫ leftwards harpoon with barb
down below long dash

infix 270 5 5 accent

⥬ ⥬ rightwards harpoon with barb up
above long dash

infix 270 5 5 accent

⥭ ⥭ rightwards harpoon with barb
down below long dash

infix 270 5 5 accent

⥮ ⥮ upwards harpoon with barb left
beside downwards harpoon with
barb right

infix 270 5 5 stretchy

⥯ ⥯ downwards harpoon with barb
left beside upwards harpoon
with barb right

infix 270 5 5 stretchy

⥰ ⥰ right double arrow with rounded
head

infix 270 5 5 accent

⥱ ⥱ equals sign above rightwards
arrow

infix 270 5 5 accent

⥲ ⥲ tilde operator above rightwards
arrow

infix 270 5 5 accent

⥳ ⥳ leftwards arrow above tilde
operator

infix 270 5 5 accent

⥴ ⥴ rightwards arrow above tilde
operator

infix 270 5 5 accent

⥵ ⥵ rightwards arrow above almost
equal to

infix 270 5 5 accent

⥶ ⥶ less-than above leftwards arrow infix 270 5 5 accent

C.4 Operator dictionary entries

349

Character Glyph Name form priority lspace rspace Properties

⥷ ⥷ leftwards arrow through less-
than

infix 270 5 5 accent

⥸ ⥸ greater-than above rightwards
arrow

infix 270 5 5 accent

⥹ ⥹ subset above rightwards arrow infix 270 5 5 accent
⥺ ⥺ leftwards arrow through subset infix 270 5 5 accent
⥻ ⥻ superset above leftwards arrow infix 270 5 5 accent
⥼ ⥼ left fish tail infix 270 5 5 accent
⥽ ⥽ right fish tail infix 270 5 5 accent
⥾ ⥾ up fish tail infix 270 5 5
⥿ ⥿ down fish tail infix 270 5 5
⦙ ⦙ dotted fence infix 270 3 3
⦚ ⦚ vertical zigzag line infix 270 3 3
⦛ ⦛ measured angle opening left infix 270 3 3
⦜ ⦜ right angle variant with square infix 270 3 3
⦝ ⦝ measured right angle with dot infix 270 3 3
⦞ ⦞ angle with s inside infix 270 3 3
⦟ ⦟ acute angle infix 270 3 3
⧟ ⧟ double-ended multimap infix 270 3 3
⧯ ⧯ error-barred black square infix 270 3 3
⧴ ⧴ rule-delayed infix 270 5 5
⭅ ⭅ leftwards quadruple arrow infix 270 5 5 stretchy
⭆ ⭆ rightwards quadruple arrow infix 270 5 5 stretchy

+ + plus sign infix 275 4 4
+ + plus sign prefix 275 0 1
- - hyphen-minus infix 275 4 4
- - hyphen-minus prefix 275 0 1

± ± plus-minus sign infix 275 4 4
± ± plus-minus sign prefix 275 0 1

− − minus sign infix 275 4 4
− − minus sign prefix 275 0 1
∓ ∓ minus-or-plus sign infix 275 4 4
∓ ∓ minus-or-plus sign prefix 275 0 1
∔ ∔ dot plus infix 275 4 4
⊞ ⊞ squared plus infix 275 4 4
⊟ ⊟ squared minus infix 275 4 4

∑ ∑ n-ary summation prefix 290 1 2
largeop, movablelimits,
symmetric

⨊ ⨊ modulo two sum prefix 290 1 2
largeop, movablelimits,
symmetric

⨋ ⨋ summation with integral prefix 290 1 2 largeop, symmetric
∬ ∬ double integral prefix 300 0 1 largeop, symmetric
∭ ∭ triple integral prefix 300 0 1 largeop, symmetric
⊕ ⊕ circled plus infix 300 4 4
⊖ ⊖ circled minus infix 300 4 4
⊘ ⊘ circled division slash infix 300 4 4

⨁ ⨁ n-ary circled plus operator prefix 300 1 2
largeop, movablelimits,
symmetric

∫ ∫ integral prefix 310 0 1 largeop, symmetric
∮ ∮ contour integral prefix 310 0 1 largeop, symmetric

C Operator Dictionary (Non-Normative)

350

Character Glyph Name form priority lspace rspace Properties

∯ ∯ surface integral prefix 310 0 1 largeop, symmetric
∰ ∰ volume integral prefix 310 0 1 largeop, symmetric
∱ ∱ clockwise integral prefix 310 0 1 largeop, symmetric
∲ ∲ clockwise contour integral prefix 310 0 1 largeop, symmetric
∳ ∳ anticlockwise contour integral prefix 310 0 1 largeop, symmetric
⨌ ⨌ quadruple integral operator prefix 310 0 1 largeop, symmetric
⨍ ⨍ finite part integral prefix 310 1 2 largeop, symmetric
⨎ ⨎ integral with double stroke prefix 310 1 2 largeop, symmetric
⨏ ⨏ integral average with slash prefix 310 1 2 largeop, symmetric

⨐ ⨐ circulation function prefix 310 1 2
largeop, movablelimits,
symmetric

⨑ ⨑ anticlockwise integration prefix 310 1 2
largeop, movablelimits,
symmetric

⨒ ⨒ line integration with rectangular
path around pole

prefix 310 1 2
largeop, movablelimits,
symmetric

⨓ ⨓ line integration with
semicircular path around pole

prefix 310 1 2
largeop, movablelimits,
symmetric

⨔ ⨔ line integration not including the
pole

prefix 310 1 2
largeop, movablelimits,
symmetric

⨕ ⨕ integral around a point operator prefix 310 1 2 largeop, symmetric
⨖ ⨖ quaternion integral operator prefix 310 1 2 largeop, symmetric

⨗ ⨗ integral with leftwards arrow
with hook

prefix 310 1 2 largeop, symmetric

⨘ ⨘ integral with times sign prefix 310 1 2 largeop, symmetric
⨙ ⨙ integral with intersection prefix 310 1 2 largeop, symmetric
⨚ ⨚ integral with union prefix 310 1 2 largeop, symmetric
⨛ ⨛ integral with overbar prefix 310 1 2 largeop, symmetric
⨜ ⨜ integral with underbar prefix 310 1 2 largeop, symmetric

⋃ ⋃ n-ary union prefix 320 1 2
largeop, movablelimits,
symmetric

⨃ ⨃ n-ary union operator with dot prefix 320 1 2
largeop, movablelimits,
symmetric

⨄ ⨄ n-ary union operator with plus prefix 320 1 2
largeop, movablelimits,
symmetric

⋀ ⋀ n-ary logical and prefix 330 1 2
largeop, movablelimits,
symmetric

⋁ ⋁ n-ary logical or prefix 330 1 2
largeop, movablelimits,
symmetric

⋂ ⋂ n-ary intersection prefix 330 1 2
largeop, movablelimits,
symmetric

⨀ ⨀ n-ary circled dot operator prefix 330 1 2
largeop, movablelimits,
symmetric

⨂ ⨂ n-ary circled times operator prefix 330 1 2
largeop, movablelimits,
symmetric

⨅ ⨅ n-ary square intersection
operator

prefix 330 1 2
largeop, movablelimits,
symmetric

⨆ ⨆ n-ary square union operator prefix 330 1 2
largeop, movablelimits,
symmetric

⨇ ⨇ two logical and operator prefix 330 1 2
largeop, movablelimits,
symmetric

C.4 Operator dictionary entries

351

Character Glyph Name form priority lspace rspace Properties

⨈ ⨈ two logical or operator prefix 330 1 2
largeop, movablelimits,
symmetric

⨉ ⨉ n-ary times operator prefix 330 1 2
largeop, movablelimits,
symmetric

⫼ ⫼ large triple vertical bar operator prefix 330 1 2
largeop, movablelimits,
symmetric

⫿ ⫿ n-ary white vertical bar prefix 330 1 2
largeop, movablelimits,
symmetric

≀ ≀ wreath product infix 340 4 4

∏ ∏ n-ary product prefix 350 1 2
largeop, movablelimits,
symmetric

∐ ∐ n-ary coproduct prefix 350 1 2
largeop, movablelimits,
symmetric

∩ ∩ intersection infix 350 4 4
∪ ∪ union infix 350 4 4

* * asterisk infix 390 3 3
. . full stop infix 390 3 3

× × multiplication sign infix 390 4 4
• • bullet infix 390 4 4
⁃ ⁃ hyphen bullet infix 390 4 4
⁢ invisible times infix 390 0 0
⊠ ⊠ squared times infix 390 4 4
⊡ ⊡ squared dot operator infix 390 4 4
⋅ ⋅ dot operator infix 390 4 4
⨯ ⨯ vector or cross product infix 390 4 4
⨿ ⨿ amalgamation or coproduct infix 390 4 4

· · middle dot infix 400 4 4
⊗ ⊗ circled times infix 410 4 4

% % percent sign infix 640 3 3
\ \ reverse solidus infix 650 0 0

∖ ∖ set minus infix 650 4 4
/ / solidus infix 660 1 1

÷ ÷ division sign infix 660 4 4
∠ ∠ angle prefix 670 0 0
∡ ∡ measured angle prefix 670 0 0
∢ ∢ spherical angle prefix 670 0 0
¬ ¬ not sign prefix 680 2 1

⊙ ⊙ circled dot operator infix 710 4 4
∂ ∂ partial differential prefix 740 2 1
∇ ∇ nabla prefix 740 2 1

** ** multiple character operator: ** infix 780 1 1
<> <> multiple character operator: <> infix 780 1 1

^ ^ circumflex accent infix 780 1 1
′ ′ prime postfix 800 0 0
♭ ♭ music flat sign postfix 800 0 2
♮ ♮ music natural sign postfix 800 0 2
♯ ♯ music sharp sign postfix 800 0 2

! ! exclamation mark postfix 810 1 0
!! !! multiple character operator: !! postfix 810 1 0

C Operator Dictionary (Non-Normative)

352

Character Glyph Name form priority lspace rspace Properties

// // multiple character operator: // infix 820 1 1
@ @ commercial at infix 825 1 1
? ? question mark infix 835 1 1

ⅅ ⅅ double-struck italic capital d prefix 845 2 1
ⅆ ⅆ double-struck italic small d prefix 845 2 0
√ √ square root prefix 845 1 1 stretchy
∛ ∛ cube root prefix 845 1 1
∜ ∜ fourth root prefix 845 1 1
⁡ function application infix 850 0 0

" " quotation mark postfix 880 0 0 accent
& & ampersand postfix 880 0 0

' ' apostrophe postfix 880 0 0 accent
++ ++ multiple character operator: ++ postfix 880 0 0
-- -- multiple character operator: -- postfix 880 0 0
^ ^ circumflex accent postfix 880 0 0 stretchy, accent
_ _ low line postfix 880 0 0 stretchy, accent
` ` grave accent postfix 880 0 0 accent
~ ~ tilde postfix 880 0 0 stretchy, accent

¨ ¨ diaeresis postfix 880 0 0 accent
ª ª feminine ordinal indicator postfix 880 0 0 accent
¯ ¯ macron postfix 880 0 0 stretchy, accent
° ° degree sign postfix 880 0 0
² ² superscript two postfix 880 0 0 accent
³ ³ superscript three postfix 880 0 0 accent
´ ´ acute accent postfix 880 0 0 accent
¸ ¸ cedilla postfix 880 0 0 accent
¹ ¹ superscript one postfix 880 0 0 accent
º º masculine ordinal indicator postfix 880 0 0 accent
ˆ ˆ modifier letter circumflex accent postfix 880 0 0 stretchy, accent
ˇ ˇ caron postfix 880 0 0 stretchy, accent
ˉ ˉ modifier letter macron postfix 880 0 0 stretchy, accent
ˊ ˊ modifier letter acute accent postfix 880 0 0 accent
ˋ ˋ modifier letter grave accent postfix 880 0 0 accent
ˍ ˍ modifier letter low macron postfix 880 0 0 stretchy, accent
˘ ˘ breve postfix 880 0 0 accent
˙ ˙ dot above postfix 880 0 0 accent
˚ ˚ ring above postfix 880 0 0 accent
˜ ˜ small tilde postfix 880 0 0 stretchy, accent
˝ ˝ double acute accent postfix 880 0 0 accent
˷ ˷ modifier letter low tilde postfix 880 0 0 stretchy, accent
̂ ̂ combining circumflex accent postfix 880 0 0 stretchy, accent
̑ ̑ combining inverted breve postfix 880 0 0 accent

‚ ‚ single low-9 quotation mark postfix 880 0 0 accent

‛ ‛ single high-reversed-9 quotation
mark

postfix 880 0 0 accent

„ „ double low-9 quotation mark postfix 880 0 0 accent

‟ ‟ double high-reversed-9
quotation mark

postfix 880 0 0 accent

″ ″ double prime postfix 880 0 0 accent
‴ ‴ triple prime postfix 880 0 0 accent

C.4 Operator dictionary entries

353

Character Glyph Name form priority lspace rspace Properties

‵ ‵ reversed prime postfix 880 0 0 accent
‶ ‶ reversed double prime postfix 880 0 0 accent
‷ ‷ reversed triple prime postfix 880 0 0 accent
‾ ‾ overline postfix 880 0 0 stretchy, accent
⁗ ⁗ quadruple prime postfix 880 0 0 accent
⁤ invisible plus infix 880 0 0
⃛ ⃛ combining three dots above postfix 880 0 0 accent
⃜ ⃜ combining four dots above postfix 880 0 0 accent
⎴ ⎴ top square bracket postfix 880 0 0 stretchy, accent
⎵ ⎵ bottom square bracket postfix 880 0 0 stretchy, accent
⏜ ⏜ top parenthesis postfix 880 0 0 stretchy, accent
⏝ ⏝ bottom parenthesis postfix 880 0 0 stretchy, accent
⏞ ⏞ top curly bracket postfix 880 0 0 stretchy, accent
⏟ ⏟ bottom curly bracket postfix 880 0 0 stretchy, accent
⏠ ⏠ top tortoise shell bracket postfix 880 0 0 stretchy, accent
⏡ ⏡ bottom tortoise shell bracket postfix 880 0 0 stretchy, accent

_ _ low line infix 900 1 1

C Operator Dictionary (Non-Normative)

354

D Glossary (Non-Normative)

Several of the following definitions of terms have been borrowed or modified from similar definitions in docu-
ments originating from W3C or standards organizations. See the individual definitions for more information.

Argument
A child of a presentation layout schema. That is, "A is an argument of B" means "A is a child of B and B is
a presentation layout schema". Thus, token elements have no arguments, even if they have children (which
can only be malignmark).

Attribute
A parameter used to specify some property of an SGML or XML element type. It is defined in terms of
an attribute name, attribute type, and a default value. A value may be specified for it on a start-tag for that
element type.

Axis
The axis is an imaginary alignment line upon which a fraction line is centered. Often, operators as well as
characters that can stretch, such as parentheses, brackets, braces, summation signs etc., are centered on the
axis, and are symmetric with respect to it.

Baseline
The baseline is an imaginary alignment line upon which a glyph without a descender rests. The baseline
is an intrinsic property of the glyph (namely a horizontal line). Often baselines are aligned (joined) during
typesetting.

Black box
The bounding box of the actual size taken up by the viewable portion (ink) of a glyph or expression.

Bounding box
The rectangular box of smallest size, taking into account the constraints on boxes allowed in a particular
context, which contains some specific part of a rendered display.

Box
A rectangular plane area considered to contain a character or further sub-boxes, used in discussions of
rendering for display. It is usually considered to have a baseline, height, depth and width.

Cascading Style Sheets (CSS)
A language that allows authors and readers to attach style (e.g. fonts, colors and spacing) to HTML and
XML documents.

Character
A member of a set of identifiers used for the organization, control or representation of text. ISO/IEC
Standard 10646-1:1993 uses the word "data" here instead of "text".

Character data (CDATA)
A data type in SGML and XML for raw data that does not include markup or entity references. Attributes
of type CDATA may contain entity references. These are expanded by an XML processor before the
attribute value is processed as CDATA.

Character or expression depth
Distance between the baseline and bottom edge of the character glyph or expression. Also known as the
descent.

Character or expression height
Distance between the baseline and top edge of the character glyph or expression. Also known as the
ascent.

Character or expression width
Horizontal distance taken by the character glyph as indicated in the font metrics, or the total width of an
expression.

Condition
A MathML content element used to place a mathematical condition on one or more variables.

Contained (element A is contained in element B)
A is part of B's content.

355

Container (Constructor)
A non-empty Content MathML element that is used to construct a mathematical object such as a number,
set, or list.

Content elements
MathML elements that explicitly specify the mathematical meaning of a portion of a MathML expression
(defined in Chapter 4 Content Markup).

Content token element
Content element having only PCDATA, sep and presentation expressions as content. Represents either an
identifier (ci) or a number (cn).

Context (of a given MathML expression)
Information provided during the rendering of some MathML data to the rendering process for the given
MathML expression; especially information about the MathML markup surrounding the expression.

Declaration
An instance of the declare element.

Depth
(of a box) The distance from the baseline of the box to the bottom edge of the box.

Direct sub-expression (of a MathML expression "E")
A sub-expression directly contained in E.

Directly contained (element A in element B)
A is a child of B (as defined in XML), in other words A is contained in B, but not in any element that is
itself contained in B.

Document Object Model
A model in which the document or Web page is treated as an object repository. This model is developed by
the DOM Working Group (DOM) of the W3C.

Document Style Semantics and Specification Language (DSSSL)
A method of specifying the formatting and transformation of SGML documents. ISO International Stand-
ard 10179:1996.

Document Type Definition (DTD)
In SGML or XML, a DTD is a formal definition of the elements and the relationship among the data
elements (the structure) for a particular type of document.

Em
A font-relative measure encoded by the font. Before electronic typesetting, an "em" was the width of an
"M" in the font. In modern usage, an "em" is either specified by the designer of the font or is taken to be
the height (point size) of the font. Em's are typically used for font-relative horizontal sizes.

Ex
A font-relative measure that is the height of an "x" in the font. "ex"s are typically used for font-relative
vertical sizes.

Height
(of a box) The distance from the baseline of the box to the top edge of the box.

Inferred mrow
An mrow element that is "inferred" around the contents of certain layout schemata when they have other
than exactly one argument. Defined precisely in Section 3.1.9 Summary of Presentation Elements

Embedded object
Embedded objects such as Java applets, Microsoft Component Object Model (COM) objects (e.g. ActiveX
Controls and ActiveX Document embeddings), and plug-ins that reside in an HTML document.

Embellished operator
An operator, including any "embellishment" it may have, such as superscripts or style information. The
"embellishment" is represented by a layout schema that contains the operator itself. Defined precisely in
Section 3.2.5 Operator, Fence, Separator or Accent <mo>.

D Glossary (Non-Normative)

356

Entity reference
A sequence of ASCII characters of the form &name; representing some other data, typically a non-ASCII
character, a sequence of characters, or an external source of data, e.g. a file containing a set of standard
entity definitions such as ISO Latin 1.

Extensible Markup Language (XML)
A simple dialect of SGML intended to enable generic SGML to be served, received, and processed on the
Web.

Fences
In typesetting, bracketing tokens like parentheses, braces, and brackets, which usually appear in matched
pairs.

Font
A particular collection of glyphs of a typeface of a given size, weight and style, for example "Times
Roman Bold 12 point".

Glyph
The actual shape (bit pattern, outline) of a character. ISO/IEC Standard 9541-1:1991 defines a glyph as a
recognizable abstract graphic symbol that is independent of any specific design.

Indirectly contained
A is contained in B, but not directly contained in B.

Instance of MathML
A single instance of the top level element of MathML, and/or a single instance of embedded MathML in
some other data format.

Inverse function
A mathematical function that, when composed with the original function acts like an identity function.

Lambda expression
A mathematical expression used to define a function in terms of variables and an expression in those
variables.

Layout schema (plural: schemata)
A presentation element defined in chapter 3, other than the token elements and empty elements defined
there (i.e. not the elements defined in Section 3.2 Token Elements and Section 3.5.5 Alignment Markers
<maligngroup/>, <malignmark/>, or the empty elements none and mprescripts defined in Section
3.4.7 Prescripts and Tensor Indices <mmultiscripts>, <mprescripts/>, <none/>). The layout sche-
mata are never empty elements (though their content may contain nothing in some cases), are always
expressions, and all allow any MathML expressions as arguments (except for requirements on argument
count, and the requirement for a certain empty element in mmultiscripts).

Mathematical Markup Language (MathML)
The markup language specified in this document for describing the structure of mathematical expressions,
together with a mathematical context.

MathML element
An XML element that forms part of the logical structure of a MathML document.

MathML expression (within some valid MathML data)
A single instance of a presentation element, except for the empty elements none or mprescripts, or an
instance of malignmark within a token element (defined below); or a single instance of certain of the
content elements (see Chapter 4 Content Markup for a precise definition of which ones).

Multi-purpose Internet Mail Extensions (MIME)
A set of specifications that offers a way to interchange text in languages with different character sets, and
multimedia content among many different computer systems that use Internet mail standards.

Operator, content element
A mathematical object that is applied to arguments using the apply element.

Operator, an mo element
Used to represent ordinary operators, fences, separators in MathML presentation. (The token element mo is
defined in Section 3.2.5 Operator, Fence, Separator or Accent <mo>).

357

OpenMath
A general representation language for communicating mathematical objects between application programs.

Parsed character data (PCDATA)
An SGML/XML data type for raw data occurring in a context where text is parsed and markup (for
instance entity references and element start/end tags) is recognized.

Point
Point is often abbreviated "pt". The value of 1 pt is approximately 1/72 inch. Points are typically used to
specify absolute sizes for font-related objects.

Presentation elements
MathML tags and entities intended to express the syntactic structure of mathematical notation (defined in
Chapter 3 Presentation Markup).

Presentation layout schema
A presentation element that can have other MathML elements as content.

Presentation token element
A presentation element that can contain only parsed character data or the malignmark element.

Qualifier
A MathML content element that is used to specify the value of a specific named parameter in the applica-
tion of selected pre-defined functions.

Relation
A MathML content element used to construct expressions such as a < b.

Render
Faithfully translate into application-specific form allowing native application operations to be performed.

Schema
Schema (plural: schemata or schemata). See "presentation layout schema".

Scope of a declaration
The portion of a MathML document in which a particular definition is active.

Selected sub-expression (of an maction element)
The argument of an maction element (a layout schema defined in Section 3.7 Enlivening Expressions)
that is (at any given time) "selected" within the viewing state of a MathML renderer, or by the selection
attribute when the element exists only in MathML data. Defined precisely in the aforementioned section.

Space-like (MathML expression)
A MathML expression that is ignored by the suggested rendering rules for MathML presentation elements
when they determine operator forms and effective operator rendering attributes based on operator positions
in mrow elements. Defined precisely in Section 3.2.7 Space <mspace/>.

Standard Generalized Markup Language (SGML)
An ISO standard (ISO 8879:1986) that provides a formal mechanism for the definition of document
structure via DTDs (Document Type Definitions), and a notation for the markup of document instances
conforming to a DTD.

Sub-expression (of a MathML expression "E")
A MathML expression contained (directly or indirectly) in the content of E.

Suggested rendering rules for MathML presentation elements
Defined throughout Chapter 3 Presentation Markup; the ones that use other terms defined here occur
mainly in Section 3.2.5 Operator, Fence, Separator or Accent <mo> and in Section 3.7 Enlivening Expres-
sions.

TEX

A software system developed by Professor Donald Knuth for typesetting documents.
Token element

Presentation token element or a Content token element. (See above.)
Top-level element (of MathML)

math (defined in Section 2.2 The Top-Level <math> Element).

D Glossary (Non-Normative)

358

Typeface
A typeface is a specific design of a set of letters, numbers and symbols, such as "Times Roman" or
"Chicago".

Valid MathML data
MathML data that (1) conforms to the MathML DTD, (2) obeys the additional rules defined in the
MathML standard for the legal contents and attribute values of each MathML element, and (3) satisfies the
EBNF grammar for content elements.

Width (of a box)
The distance from the left edge of the box to the right edge of the box.

Extensible Style Language (XSL)
A style language for XML developed by W3C. See XSL FO and XSLT.

XSL Formatting Objects (XSL FO)
An XML vocabulary to express formatting, which is a part of XSL.

XSL Transformation (XSLT)
A language to express the transformation of XML documents into other XML documents.

359

E Working Group Membership and Acknowledgments (Non-
Normative)

E.1 The Math Working Group Membership

The present W3C Math Working Group (2012–2013) is co-chaired by David Carlisle of NAG and Patrick Ion of
the AMS; Patrick Ion and and Robert Miner of Design Science were co-chairs 2006-2011. Contact the co-chairs
about membership in the Working Group. For the current membership see the W3C Math home page.

Robert Miner, whose leadership and contributions were essential to the development of the Math Working Group
and MathML from their beginnings, died tragically young in December 2011.

Participants in the Working Group responsible for MathML 3.0 have been:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
• Pierre-Yves Bertholet, MITRE Corporation, McLean VA, USA
• Bert Bos, W3C, Sophia-Antipolis, FRA
• Mike Brenner, MITRE Corporation, Bedford MA, USA
• Olga Caprotti, University of Helsinki, Helsinki, FI
• David Carlisle, NAG Ltd., Oxford, UK
• Giorgi Chavchanidze, Opera Software, Oslo, NO
• Ananth Coorg, The Boeing Company, Seattle WA, USA
• Stéphane Dalmas, INRIA, Sophia Antipolis, FRA
• Stan Devitt, Agfa-Gevaert N. V., Trier, GER
• Sam Dooley, Integre Technical Publishing Co., Inc., Albuquerque NM, USA
• Margaret Hinchcliffe, Waterloo Maple, Inc., Waterloo ON, CAN
• Patrick Ion, W3C Invited Experts:Mathematical Reviews (American Mathematical Society), Ann Arbor

MI, USA
• Michael Kohlhase, German Research Center for Artificial Intelligence (DFKI) Gmbh, GER
• Azzeddine Lazrek, W3C Invited Experts: University of Marrakesh, Morocco
• Dennis Leas, DAISY Consortium
• Paul Libbrecht, German Research Center for Artificial Intelligence (DFKI) Gmbh, GER
• Manolis Mavrikis, University of Edinburgh, Edinburg, UK
• Bruce Miller, National Institute of Standards and Technology (NIST), Gaithersburg MD, USA
• Robert Miner, Design Science Inc., Long Beach CA, USA
• Chris Rowley, The Open University, UK
• Murray Sargent III, Microsoft, Redmond WA, USA
• Kyle Siegrist, Mathematical Association of America, Washington DC, USA
• Andrew Smith, Maplesoft Inc., Canada
• Neil Soiffer, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN
• Mohamed Zergaoui, Innovimax, Paris, FRA

All the above persons have been members of the currently chartered Math Working Group, but some not for the
whole life of the Working Group. The 22 authors listed for MathML3 at the start of this specification are those
who contributed reworkings and reformulations used in the actual text of the specification. Thus the list includes
the principal authors of MathML2 much of whose text was repurposed here. They were, of course, supported and
encouraged by the activity and discussions of the whole Math Working Group, and by helpful commentary from
outside it, both within the W3C and further afield.

360

http://www.w3.org/Math/

For 2003 to 2006 W3C Math Activity comprised a Math Interest Group, chaired by David Carlisle of NAG and
Robert Miner of Design Science.

The W3C Math Working Group (2001–2003) was co-chaired by Patrick Ion of the AMS, and Angel Diaz of
IBM from June 2001 to May 2002; afterwards Patrick Ion continued as chair until the end of the WG's extended
charter.

Participants in the Working Group responsible for MathML 2.0, second edition were:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Buswell, Stilo Technology Ltd., Bristol, UK
• David Carlisle, NAG Ltd., Oxford, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Stratum Technical Services Ltd., Waterloo ON, CAN (earlier with Waterloo Maple, Inc.,

Waterloo ON, CAN)
• Max Froumentin, W3C, Sophia-Antipolis, FRA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Michael Kohlhase, DFKI, GER
• Robert Miner, Design Science Inc., Long Beach CA, USA
• Luca Padovani, University of Bologna, IT
• Ivor Philips, Boeing, Seattle WA, USA
• Murray Sargent III, Microsoft, Redmond WA, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN

Earlier active participants of the W3C Math Working Group (2001 – 2003) have included:

• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Sam Dooley, IBM Research, Yorktown Heights NY, USA
• Barry MacKichan, MacKichan Software, Las Cruces NM, USA

The W3C Math Working Group was co-chaired by Patrick Ion of the AMS, and Angel Diaz of IBM from July
1998 to December 2000.

Participants in the Working Group responsible for MathML 2.0 were:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Maplesoft, Waterloo ON, CAN
• Stephen Buswell, Stilo Technology Ltd., Cardiff, UK
• David Carlisle, NAG Ltd., Oxford, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Stratum Technical Services Ltd., Waterloo ON, CAN (earlier with Waterloo Maple, Inc.,

Waterloo ON, CAN)
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Ben Hinkle, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Hunt, MATH.EDU Inc., Champaign IL, USA
• Douglas Lovell, IBM Hawthorne Research, Yorktown Heights NY, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Design Science Inc., Long Beach CA, USA (earlier with Geometry Technologies Inc.,

Minneapolis MN, USA)
• Ivor Philips, Boeing, Seattle WA, USA

E.1 The Math Working Group Membership

361

• Nico Poppelier, Penta Scope, Amersfoort, NL (earlier with Salience and Elsevier Science, NL)
• Dave Raggett, W3C (Openwave), Bristol, UK (earlier with Hewlett-Packard)
• T.V. Raman, IBM Almaden, Palo Alto CA, USA (earlier with Adobe Inc., Mountain View CA, USA)
• Murray Sargent III, Microsoft, Redmond WA, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Irene Schena, Universitá di Bologna, Bologna, IT
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN

Earlier active participants of this second W3C Math Working Group have included:

• Sam Dooley, IBM Research, Yorktown Heights NY, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Barry MacKichan, MacKichan Software, Las Cruces NM, USA

At the time of release of MathML 1.0 [MathML1] the Math Working Group was co-chaired by Patrick Ion and
Robert Miner, then of the Geometry Center. Since that time several changes in membership have taken place.
In the course of the update to MathML 1.01, in addition to people listed in the original membership below,
corrections were offered by David Carlisle, Don Gignac, Kostya Serebriany, Ben Hinkle, Sebastian Rahtz, Sam
Dooley and others.

Participants in the Math Working Group responsible for the finished MathML 1.0 specification were:

• Stephen Buswell, Stilo Technology Ltd., Cardiff, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Maplesoft Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Brenda Hunt, Wolfram Research Inc., Champaign IL, USA
• Stephen Hunt, Wolfram Research Inc., Champaign IL, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Geometry Center, University of Minnesota, Minneapolis MN, USA
• Nico Poppelier, Elsevier Science, Amsterdam, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, Adobe Inc., Mountain View CA, USA
• Bruce Smith, Wolfram Research Inc., Champaign IL, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN
• Ralph Youngen, American Mathematical Society, Providence RI, USA

Others who had been members of the W3C Math WG for periods at earlier stages were:

• Stephen Glim, Mathsoft Inc., Cambridge MA, USA
• Arnaud Le Hors, W3C, Cambridge MA, USA
• Ron Whitney, Texterity Inc., Boston MA, USA
• Lauren Wood, SoftQuad, Surrey BC, CAN
• Ka-Ping Yee, University of Waterloo, Waterloo ON, CAN

E Working Group Membership and Acknowledgments (Non-Normative)

362

E.2 Acknowledgments

The Working Group benefited from the help of many other people in developing the specification for MathML
1.0. We would like to particularly name Barbara Beeton, Chris Hamlin, John Jenkins, Ira Polans, Arthur Smith,
Robby Villegas and Joe Yurvati for help and information in assembling the character tables in Chapter 7
Characters, Entities and Fonts, as well as Peter Flynn, Russell S.S. O'Connor, Andreas Strotmann, and other
contributors to the www-math mailing list for their careful proofreading and constructive criticisms.

As the Math Working Group went on to MathML 2.0, it again was helped by many from the W3C family of
Working Groups with whom we necessarily had a great deal of interaction. Outside the W3C, a particularly
active relevant front was the interface with the Unicode Technical Committee (UTC) and the NTSC WG2
dealing with ISO 10646. There the STIX project put together a proposal for the addition of characters for
mathematical notation to Unicode, and this work was again spearheaded by Barbara Beeton of the AMS. The
whole problem ended split into three proposals, two of which were advanced by Murray Sargent of Microsoft,
a Math WG member and member of the UTC. But the mathematical community should be grateful for essential
help and guidance over a couple of years of refinement of the proposals to help mathematics provided by
Kenneth Whistler of Sybase, and a UTC and WG2 member, and by Asmus Freytag, also involved in the UTC
and WG2 deliberations, and always a stalwart and knowledgeable supporter of the needs of scientific notation.

E.2 Acknowledgments

363

http://lists.w3.org/Archives/Public/www-math/

F Changes (Non-Normative)

F.1 Changes between MathML 3.0 First Edition and Second Edition

• Changes to the Frontmatter•

◦ Changes to Editors and Authors to acknowlege the death of Robert Miner.◦

◦ Changes to Abstract to highlight MathML may be used in HTML as well as XML.◦

◦ Update the Status.◦

• Changes to the Chapter 1 Introduction•

◦ Changes to Section 1.3 Overview to highlight MathML may be used in HTML as well as XML.◦

• Changes to the Chapter 2 MathML Fundamentals•

◦ Changes to Section 2.1.1 General Considerations to highlight MathML may be used in HTML as ◦
well as XML.

◦ Add element markup to heading in Section 2.2 The Top-Level <math> Element.◦

◦ Changes to Section 2.1.2 MathML and Namespaces the xmlns syntax for namespaces only applies ◦
to the XML serialisation.

◦ Changes to Section 2.1.5.2 Length Valued Attributes to clarify that values specified with a % or no ◦
unit are multiples of a reference value, which may differ from the default value used when the value
is not specified.

◦ Changes to namedspace in Section 2.1.5.2 Length Valued Attributes some attribute values such as ◦
"thinmathspace" were marked up as attribute names. (This affected formatting and also the index
Section I.2 MathML Attributes).

◦ Additional paragraph describing global document property defaults in Section 2.1.5.4 Default values ◦
of attributes

• Changes to the Chapter 3 Presentation Markup•

◦ Refer to "characters" rather than "MathML Characters" in Section 3.1 Introduction.◦

◦ Delete the note about bidi in HTML in Section 3.1.5.2 Bidirectional Layout in Token Elements (As ◦
there are proposals to change the HTML behavior).

◦ Corrected mistaken refererence to mtext, replaced by reference to mo in Section 3.1.8.2 Warning: ◦
spacing should not be used to convey meaning

◦ Refer to HTML rather than XHTML in Section 3.1.10 Mathematics style attributes common to ◦
presentation elements

◦ Modify heading of Section 3.2.1 Token Element Content Characters, <mglyph/>.◦

◦ Note in Section 3.2.1.2 Using images to represent symbols <mglyph/> that the requirement to use ◦
src and alt is not enforced by the schema.

◦ New section Section 3.2.2.2 Embedding HTML in MathML detailing the use of HTML elements on ◦
MathML token elements

◦ Use U+2026 rather than . . . in the example in Section 3.2.3 Identifier <mi>.◦

◦ Use percentage lengths rather than unitless lengths in examples in Section 3.2.5.8 Stretching of ◦
operators, fences and accents and Section 3.3.2 Fractions <mfrac>

◦ Reference the Arabic Mathematical Symbols block in describing mathvariant in Section 3.2.2 ◦
Mathematics style attributes common to token elements.

◦ Do not specify that Math defaults may be set by using attributes in the MathML Namespace on ◦
the containing document, leave the mechanism open. Section 3.2.5 Operator, Fence, Separator or
Accent <mo>

364

◦ Changes to Section 3.2.5.2 Attributes to clarify defaults may be specified in any containing docu-◦
ment.

◦ Changes to Section 3.2.5.2.1 Dictionary-based attributes to clarify the interpretation of maxsize, ◦
minsize and symmetric values.

◦ Changes to Section 3.2.5.2.3 Indentation attributes to clarify behaviour if indenttarget results in ◦
an unachievable alignment specification.

◦ Changes to the examples in Section 3.2.5.5 Invisible operators so that each example is rendered as a ◦
separate math expression.

◦ Suggest CSS Counters as a possible mechanism for equation numbering in Section 3.5.3 Labeled ◦
Row in Table or Matrix <mlabeledtr>

◦ Minor improvements to the markup in Section 3.3.4 Style Change <mstyle>.◦

◦ Minor improvements to the markup in Section 3.3.9 Enclose Expression Inside Notation ◦
<menclose>.

◦ Changes to the attribute table Section 3.3.6.2 Attributes To clarify that unitless lengths are allowed ◦
on mpadded, meaning, as usual, a multiplier of the stated default. Note that this change also affects
the mpadded-length grammar uin the extracted schema.

◦ Explictly list mprescripts and none in heading for Section 3.4.7 Prescripts and Tensor Indices ◦
<mmultiscripts>, <mprescripts/>, <none/>.

◦ Changes to Section 3.5.1.2 Attributes to clarify that displaystyle defaults to "false" and to clarify ◦
the wording describing percentage values for width.

◦ Minor improvements to the markup in Section 3.6.1 Stacks of Characters <mstack>.◦

◦ Editorial improvements to Section 3.6.8.1 Addition and Subtraction.◦

◦ Modify the markup in the examples in Section 3.6.8.4 Repeating decimal so that MathML render-◦
ings are shown in some versions of this specification.

◦ Note that attributes in other namespaces are not available in HTML in Section 3.7.1 Bind Action to ◦
Sub-Expression <maction>

• Changes to the Chapter 4 Content Markup•

◦ Add element markup to heading in Section 4.2.1.1 Rendering <cn>, <sep/> - Represented Num-◦
bers .

◦ Add syntax table for qualifier elements in Section 4.3.3.1 Uses of <domainofapplication>, ◦
<interval>, <condition>, <lowlimit> and <uplimit> and Section 4.3.3.2 Uses of
<degree>.

◦ Modify the text in Section 4.1.5 Content MathML Concepts to clarify the role of the Qualifier row ◦
of syntax tables. (AM)

◦ Spurious apply removed from the "0" case in the example in Section 4.4.1.9 Piecewise declaration ◦
<piecewise>, <piece>, <otherwise>.

◦ Changes to Rewrite: partialdiffdegree The expression expression-in-x1-xk was rewritten to A. (AM)◦

◦ Additional note added to the mathmltypes description clarifying that "complex" should be taken as ◦
an alias for "complex-cartesian" when rewriting to Strict Content MathML. (AM)

◦ Changes to s_data1.mean, s_dist1.mean, s_dist1.moment and s_data1.moment examples to use new ◦
values for ⟨ and ⟩ so the result is in Unicode NFC form.

◦ Changes to markup of syntax tables in Section 4.2.5 Function Application <apply> and Section ◦
4.2.7.1 The share element to avoid redundant colspans, which make the html5 version invalid.

◦ Clarify the behavior of qualifiers in Step 4b of the rewrite to Strict Content MathML. (AM)◦

F.1 Changes between MathML 3.0 First Edition and Second Edition

365

◦ Clarify that the types of the arguments are used to distinguish between set and multiset use of ◦
the set constructor in Section 4.3.4.1.2 Rewriting to Strict Content MathML and Section 4.3.4.2.2
Rewriting to Strict Content MathML. (AM)

◦ Fix spelling in Section 4.4.2.16 Not <not/>.◦

◦ Fix spelling in Section 4.4.3.1 Equals <eq/>.◦

◦ Split Section 4.4.7.1 Common trigonometric functions <sin/>, <cos/>, <tan/>, <sec/>, ◦
<csc/>, <cot/> into separate sections Section 4.4.7.1 Common trigonometric functions <sin/>,
<cos/>, <tan/>, <sec/>, <csc/>, <cot/> , Section 4.4.7.1 Common trigonometric functions
<sin/>, <cos/>, <tan/>, <sec/>, <csc/>, <cot/> , Section 4.4.7.2 Common inverses of trigo-
nometric functions <arcsin/>, <arccos/>, <arctan/>, <arcsec/>, <arccsc/>, <arccot/>,
Section 4.4.7.3 Common hyperbolic functions <sinh/>, <cosh/>, <tanh/>, <sech/>, <csch/>,
<coth/>, Section 4.4.7.4 Common inverses of hyperbolic functions <arcsinh/>, <arccosh/>,
<arctanh/>, <arcsech/>, <arccsch/>, <arccoth/> , add new presentation images for arcsin.

◦ Add element markup to heading in Section 4.4.7.7 Logarithm <log/>, <logbase> .◦

◦ Minor rearrangement of heading in Section 4.4.8.6 Moment <moment/>, <momentabout>◦

◦ Add syntax table for deprecated elements in Section 4.5.1 Declare <declare>, Section 4.5.3 Rela-◦
tion <fn> and Section 4.5.2 Relation <reln>.

• Changes to Chapter 5 Mixing Markup Languages for Mathematical Expressions.•

◦ Changes to Section 5.1.1 Annotation elements to highlight MathML may be used in HTML as well ◦
as XML.

◦ Add additional note warning namespace extensibility example not applicable to HTML.◦

◦ Add additional note warning namespace extensibility example not applicable to HTML.◦

◦ Add additional note warning namespace extensibility example not applicable to HTML.◦

◦ Additional section Section 5.2.3.3 Using annotation-xml in HTML documents detailing the use ◦
of annotation-xmlin HTML documents

◦ Show tag markup around element names in section headings in semantics, annotation and ◦
annotation-xml.

• Changes to Chapter 6 Interactions with the Host Environment.•

◦ Editorial wording changes in Section 6.4 Combining MathML and Other Formats.◦

◦ Editorial wording changes in Section 6.5 Using CSS with MathML.◦

◦ Changes to wording on namespace use in Section 6.1 Introduction.◦

◦ Additional section Section 6.2.2 Recognizing MathML in HTML.◦

◦ Remove XML Declaration and mml namespace prefix from the examples in Section 6.3.4 Examples.◦

◦ Delete recommendation to use prefixed element names in XHTML in Section 6.4.1 Mixing ◦
MathML and XHTML.

◦ Split HTML into a separate section from other non-XML use Section 6.4.3 Mixing MathML and ◦
HTML and Section 6.4.2 Mixing MathML and non-XML contexts

◦ Remove the reference, Layout engines that lack native MathML support, to [MathMLforCSS] in ◦
Chapter 6 Interactions with the Host Environment.

• Changes to Chapter 7 Characters, Entities and Fonts.•

◦ Change the DTD description in Section 7.3 Entity Declarations to reference the Combined HTML ◦
MathML entity set rather than the legacy ISO entity sets. This does not change any existing def-
inition, but adds the following 38 entity definitions: " (U+0022), & (U+0026), <
(U+003C), > (U+003E), © (U+00A9), ® (U+00AE), Α (U+0391), Β
(U+0392), Ε (U+0395), Ζ (U+0396), Η (U+0397), Ι (U+0399),
Κ (U+039A), Μ (U+039C), Ν (U+039D), Ο (U+039F), Ρ (U+03A1),

F Changes (Non-Normative)

366

Τ (U+03A4), Χ (U+03A7), ε (U+03B5), ο (U+03BF), ς
(U+03C2), ϑ (U+03D1), ϒ (U+03D2), ‌ (U+200C), ‍ (U+200D),
‎ (U+200E), ‏ (U+200F), ‚ (U+201A), „ (U+201E), ‹
(U+2039), › (U+203A), ‾ (U+203E), ⁄ (U+2044), € (U+20AC),
™ (U+2122), ℵ (U+2135), ↵ (U+21B5).

• Changes to Appendix A Parsing MathML.•

◦ Modify the schema regular expression to allow the deprecated unitless length attributes.◦

◦ The schema now enforces a mandatory space and optional minus sign before rownumber in the ◦
align attribute of mtable and mstack.

◦ Modify the schema (including DTD and XSD versions) to include the attributes listed in Section ◦
3.2.5.2.3 Indentation attributes on mspace to match the text description in Section 3.2.7 Space
<mspace/>.

◦ Modify the schema to include the Common Attributes such as id on bvar and cn to match the ◦
attribute tables in the text

◦ Modify the regular expressions used for mpadded-length and length so that there must be at ◦
most one . and at least one digit. (FW)

◦ New sections: Section A.5 Parsing MathML in XHTML and Section A.6 Parsing MathML in ◦
HTML.

• Changes to Appendix C Operator Dictionary.•

◦ Add entries for the characters listed in Section 7.7.2 Pseudo-scripts.◦

• Changes to Appendix E Working Group Membership and Acknowledgments.•

◦ Changes to Section E.1 The Math Working Group Membership to note the death of Robert Miner.◦

• Changes to Appendix G Normative References.•

◦ Make [HTML5] normative.◦

◦ Update the references to current versions, [Bidi], [Entities], [ISO10646], [Normal], [RELAX-NG], ◦
[Unicode].

• Changes to Appendix H References.•

◦ Update the references to current versions, [AAP-math], [Abramowitz1977], [CSS21], [ISO-12083], ◦
[XLink].

• Changes to Appendix I Index.•

◦ Changes to Section I.2 MathML Attributes.◦

F.2 Changes between MathML 2.0 Second Edition and MathML 3.0

• Changes to Chapter 2 MathML Fundamentals.•

◦ The attribute href added to the common MathML attributes, Section 2.1.6 Attributes Shared by all ◦
MathML Elements to allow hypertext links.

◦ Additional attributes added to the math element, see Section 2.2.1 Attributes.◦

• Changes to Chapter 3 Presentation Markup.•

◦ Introduced mechanisms for controlling the Directionality of layout, as described in Section 3.1.5 ◦
Directionality.

◦ Introduced mechanisms for controlling linebreaking Section 3.1.7 Linebreaking of Expressions.◦

◦ Extended mglyph to support general image inclusion, Section 3.2.1.2 Using images to represent ◦
symbols <mglyph/>.

F.2 Changes between MathML 2.0 Second Edition and MathML 3.0

367

◦ The facilities for adjusting spacing with mpadded have been extended and rationalised, Section ◦
3.3.6 Adjust Space Around Content <mpadded>.

◦ Introduced new presentation elements for elementary math layouts, Section 3.6 Elementary Math: ◦
mstack, mlongdiv, msgroup, msrow, mscarries, mscarry, and msline.

• Changes to Chapter 4 Content Markup.•

◦ Introduced new content elements bind, share, cerror, cs and cbytes.◦

◦ Removed deprecated content elements reln and fn.◦

◦ Removed content element declare.◦

◦ The concept of Strict Content MathML and the use of OpenMath Content Dictionaries has been ◦
introduced, and the whole chapter restructured.

• Changes to Chapter 5 Mixing Markup Languages for Mathematical Expressions.•

• New Chapter: Chapter 6 Interactions with the Host Environment.•

• Changes to Chapter 7 Characters, Entities and Fonts.•

This chapter is much reduced from the corresponding chapter in previous releases of MathML. All the
tables and much of the other content of this chapter is now maintained as a separate document [Entities]

• Changes to Appendix A Parsing MathML.•

◦ The Normative version of the grammar is now expressed in Relax NG, with DTD and XSD versions ◦
being derived.

◦ Three MathML 1 attrbutes on math that were deprecated and undocumented in MathML2 but ◦
retained in the MathML2 DTD have been removed. name (use id instead), baseline and
type (These are not used by any known implementation, so can be removed.) See Chapter 7 of
[MathML1].

• New Appendix: Appendix B Media Types Registrations.•

• Changes to Appendix C Operator Dictionary.•

The Operator Dictionary table has been updated and rationalised and presented in a new format.

• MathML DOM•

The chapter and appendices relating to the MathML DOM have been removed from this specification,
with the intention of updating them and publishing them as a separate document at a later time.

F Changes (Non-Normative)

368

G Normative References

Bidi
Mark Davis; Unicode Bidirectional Algorithm, Unicode Standard Annex #9, Unicode 6.3.0 2013-09-24.
(http://www.unicode.org/reports/tr9/)

Entities
David Carlisle and Patrick Ion (editors); XML Entity Definitions for Characters (2nd Edition), W3C
Recommendation 10 April 2014. (http://www.w3.org/TR/xml-entity-names/)

HTML4
Dave Raggett, Arnaud Le Hors, and Ian Jacobs (editors); HTML 4.01 Specification, W3C Recommenda-
tion, 24 December 1999. (http://www.w3.org/TR/html401/)

HTML5
Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Edward O'Connor, Silvia Pfeiffer,
Ian Hickson; HTML 5, A vocabulary and associated APIs for HTML and XHTML W3C Candidate Recom-
mendation 04 February 2014 (http://www.w3.org/TR/html5/)

IRI
M. Duerst and M. Suignard; Internationalized Resource Identifiers (IRIs), January 2005 (http://www.ietf.
org/rfc/rfc3987.txt). See also the proposed update http://tools.ietf.org/html/draft-duerst-iri-bis-07.

ISO10646
Joint Technical Committee ISO/IEC JTC 1, Subcommittee SC 2. ISO/IEC 10646:2012, Information tech-
nology -- Universal Coded Character Set (UCS). International Standards Organization, Geneva, Switzer-
land, 2012.

Namespaces
Tim Bray, Dave Hollander, Andrew Layman, Richard Tobin, and Henry S. Thompson (editors); Namespa-
ces in XML, W3C Recommendation, 8 December 2009. (http://www.w3.org/TR/REC-xml-names/)

Normal
Mark Davis, Ken Whistler, and Martin Dürst; Unicode Normalization Forms, Unicode Standard Annex
#15, Unicode 6.3.0 2013-09-20. (http://www.unicode.org/reports/tr15/)

OpenMath2004
S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaëtano and M. Kohlhase (editors); The Open-
Math Standard Version 2.0, The OpenMath Society, 30 June 2004. (http://www.openmath.org/standard/
om20-2004-06-30/)

RELAX-NG
ISO/IEC JTC 1/SC 34; Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-
based validation -- RELAX NG 2008, International Organization for Standardization, 15 December 2008.
(http://relaxng.org/spec-20011203.html)

RFC2045
N. Freed and N. Borenstein; Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC 2045, November 1996. (http://www.ietf.org/rfc/rfc2045.txt)

RFC2046
N. Freed and N. Borenstein; Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, RFC
2045, November 1996. (http://www.ietf.org/rfc/rfc2046.txt)

RFC3023
M. Murata, S. St.Laurent and D. Kohn; XML Media Types, RFC 3023, January 2001. (http://www.ietf.org/
rfc/rfc3023.txt)

RFC3986
T. Berners-Lee, R. Fielding and L. Masinter; Uniform Resource Identifier (URI): Generic Syntax, RFC
3986, January 2005. (http://tools.ietf.org/html/rfc3986)

RFC4288
N. Freed and J. Klensin; Media Type Specifications and Registration Procedures, RFC 4288, December
2005. (http://www.ietf.org/rfc/rfc4288.txt)

369

http://www.unicode.org/reports/tr9/
http://www.unicode.org/reports/tr9/
http://www.w3.org/TR/xml-entity-names/
http://www.w3.org/TR/xml-entity-names/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
http://tools.ietf.org/html/draft-duerst-iri-bis-07
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56921
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.unicode.org/reports/tr15/
http://www.unicode.org/reports/tr15/
http://www.openmath.org/standard/om20-2004-06-30/
http://www.openmath.org/standard/om20-2004-06-30/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52348
http://relaxng.org/spec-20011203.html
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3023.txt
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.ietf.org/rfc/rfc4288.txt
http://www.ietf.org/rfc/rfc4288.txt

Unicode
The Unicode Consortium. The Unicode Standard, Version 6.3.0, The Unicode Consortium, 2012. ISBN
978-1-936213-07-8. (http://www.unicode.org/versions/Unicode6.3.0/)

XHTML
Steven Pemberton, et al.; XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition): A
Reformulation of HTML 4 in XML 1.0, W3C Recommendation, 26 January 2000, revised 1 August 2002.
(http://www.w3.org/TR/xhtml1/)

XML
Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau (editors); Extensible
Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation, 26 November 2008. (http://www.
w3.org/TR/xml/)

G Normative References

370

http://www.unicode.org/versions/Unicode6.3.0/
http://www.unicode.org/versions/Unicode6.3.0/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/

H References (Non-Normative)

AAP-math
ANSI/NISO Z39.59-1998; AAP Math DTD, Standard for Electronic Manuscript Preparation and MarkUp.
(Association of American Publishers, Inc., Washington, DC) Bethesda, MD, 1988.

Abramowitz1977
Abramowitz, Milton, Irene A. Stegun (editors); Mathematical Functions: With Formulas, Graphs, and
Mathematical Tables. Dover Publications Inc., December 1977, ISBN: 0-4866-1272-4.

CSS21
Bert Bos, Tantek Çelik, Ian Hickson, and Håkon Wium Lie (editors); Cascading Style Sheets Level 2
Revision 1 (CSS 2.1) Specification, W3C Recommendation 07 June 2011. (http://www.w3.org/TR/CSS21/)

Cajori1928
Cajori, Florian; A History of Mathematical Notations, vol. I & II. Open Court Publishing Co., La
Salle Illinois, 1928 & 1929 republished Dover Publications Inc., New York, 1993, xxviii+820 pp. ISBN
0-486-67766-4 (paperback).

Chaundy1954
Chaundy, T.W., P.R. Barrett, and C. Batey; The Printing of Mathematics. Aids for authors and editors and
rules for compositors and readers at the University Press, Oxford. Oxford University Press, London, 1954,
ix+105 pp.

HTTP11
Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee; Hypertext Transfer
Protocol -- HTTP/1.1, June 1999.

IEEE754
IEEE IEEE Standard for Floating-Point Arithmetic (http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum-
ber=4610935)

ISO-12083
ISO 12083:1994; ISO 12083 DTD Information and Documentation - Electronic Manuscript Preparation
and Markup. International Standards Organization, Geneva, Switzerland, 1994.

Knuth1986
Knuth, Donald E.; The TEXbook. American Mathematical Society, Providence, RI and Addison-Wesley
Publ. Co., Reading, MA, 1986, ix+483 pp. ISBN: 0-201-13448-9.

MathML1
Patrick Ion, Robert Miner, Mathematical Markup Language (MathML) 1.01 Specification W3C Recom-
mendation, revision of 7 July 1999 (http://www.w3.org/TR/REC-MathML/)

MathML2
David Carlisle, Patrick Ion, Robert Miner, Nico Poppelier, Mathematical Markup Language (MathML)
Version 2.0 (Second Edition) W3C Recommendation 21 October 2003 (http://www.w3.org/TR/MathML2)

MathMLTypes
Stan Devitt, Michael Kohlhase, Max Froumentin (editors); Structured Types in MathML 2.0, W3C Work-
ing Group Note 10 November 2003.

MathMLforCSS
Bert Bos, David Carlisle, George Chavchanidze, Patrick D. F. Ion, Bruce R. Miller A MathML for CSS
profile W3C Recommendation 07 June 2011 (http://www.w3.org/TR/mathml-for-css)

Modularization
Daniel Austin, Subramanian Peruvemba, Shane McCarron, Masayasu Ishikawa, Mark Birbeck (editors);
XHTML[tm] Modularization 1.1 - Second Edition, World Wide Web Consortium Recommendation, 29
July 2010. (http://www.w3.org/TR/2010/REC-xhtml-modularization-20100729)

OMDoc1.2
Michael Kohlhase OMDoc - An open markup format for mathematical documents [Version 1.2] LNAI
4180, Springer Verlag, 2006 (http://omdoc.org/pubs/omdoc1.2.pdf) .

371

http://www.niso.org/apps/group_public/project/details.php?project_id=43
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/
http://www.ietf.org/rfc/rfc2616.txt
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4610935
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4610935
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/mathml-types/
http://www.w3.org/TR/mathml-for-css/
http://www.w3.org/TR/mathml-for-css/
http://www.w3.org/TR/2010/REC-xhtml-modularization-20100729/
http://www.w3.org/TR/2010/REC-xhtml-modularization-20100729/
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf

Pierce1961
Pierce, John R.; An Introduction to Information Theory. Symbols, Signals and Noise.. Revised edition of
Symbols, Signals and Noise: the Nature and Process of Communication (1961). Dover Publications Inc.,
New York, 1980, xii+305 pp. ISBN 0-486-24061-4.

Poppelier1992
Poppelier, N.A.F.M., E. van Herwijnen, and C.A. Rowley; Standard DTD's and Scientific Publishing,
EPSIG News 5 (1992) #3, September 1992, 10-19.

RelaxNGBook
Eric van der Vlist; RELAXNG: A simple schema language for XML O'Reilly 2004

SVG1.1
Dean Jackson, Jon Ferraiolo, Jun Fujisawa, eds. Scalable Vector Graphics (SVG) 1.1 Specification (Second
Edition) W3C Recommendation, 16 August 2011 (http://www.w3.org/TR/2011/REC-SVG11-20110816/)

XHTML-MathML-SVG
Masayasu Ishikawa, ed., An HTML + MathML + SVG Profile W3C Working Draft, 9 August 2002.
(http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020809/)

XLink
Steve DeRose, Eve Maler, David Orchard, Norman Walsh (editors); XML Linking Language (XLink)
Version 1.1, W3C Recommendation 06 May 2010. (http://www.w3.org/TR/2010/REC-xlink11-20100506/)

XMLSchemaDatatypes
Paul V. Biron, Ashok Malhotra, editors; XML Schema Part 2: Datatypes Second Edition, World Wide Web
Consortium Recommendation, 28 Oct 2004. (http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/)

XMLSchemas
David C. Fallside, editor; XML Schema Part 0: Primer Second Edition, W3C Recommendation 28 Octo-
ber 2004. (http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/)

XSLT
James Clark (editor); XSL Transformations (XSLT) Version 1.0, World Wide Web Consortium Recommen-
dation, 16 November 1999. (http://www.w3.org/TR/1999/REC-xslt-19991116)

rdf
Graham Klyne, Jeremy J. Carroll, Brian McBride (editors); Resource Description Framework (RDF):
Concepts and Abstract Syntax,February 2004. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

H References (Non-Normative)

372

http://www.w3.org/TR/2011/REC-SVG11-20110816/
http://www.w3.org/TR/2011/REC-SVG11-20110816/
http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020809/
http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020809/
http://www.w3.org/TR/2010/REC-xlink11-20100506/
http://www.w3.org/TR/2010/REC-xlink11-20100506/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

I Index (Non-Normative)

I.1 MathML Elements

References to sections in which an element is defined are marked in bold.

abs
192

and
157, 185

annotation
23, 24, 128, 139, 149, 262, 263, 264, 266, 267, 268,
271, 272, 276, 278, 279

annotation-xml
15, 24, 125, 128, 139, 149, 150, 263, 264, 266, 267,
269, 272, 273, 275, 276, 277, 278, 279, 283, 285,
286, 366

apply
127, 129, 130, 141, 147, 151, 153, 157, 160, 161, 166,
179, 180, 181, 183, 184, 185, 210, 222, 226, 227,
229, 238, 260, 261, 283, 357, 365

approx
200

arccos
236, 366

arccosh
237, 366

arccot
236, 366

arccoth
237, 366

arccsc
236, 366

arccsch
237, 366

arcsec
236, 366

arcsech
237, 366

arcsin
236, 366

arcsinh
237, 366

arctan
236, 366

arctanh
237, 366

arg
193

bind
127, 129, 136, 144, 148, 153, 160, 166, 171, 261, 368

bvar
128, 129, 136, 144, 148, 152, 153, 154, 159, 170, 207,
210, 227, 229, 231, 261, 272, 367

card
226

cartesianproduct
226

cbytes
128, 150, 368

ceiling
196

cerror
128, 149, 283, 368

ci
23, 45, 127, 129, 135, 136, 140, 145, 157, 262, 272,
289, 356

cn
23, 47, 107, 127, 130, 137, 167, 262, 272, 289, 356,
365

codomain
174

complexes
254

compose
172

condition
154, 188, 191, 205, 231, 261, 272, 365

conjugate
193

cos
235, 366

cosh
236, 366

cot
235, 366

coth
236, 366

cs
22, 128, 141, 368

csc
235, 366

csch
236, 366

csymbol
23, 24, 127, 128, 129, 135, 139, 149, 160, 168, 260,
262, 264, 272, 289

curl
216

declare
151, 260, 366, 368

degree
154, 159, 183, 207, 210, 244, 272, 365

determinant
248

diff
153, 159, 206

divergence
213

divide
178

373

domain
174

domainofapplication
154, 161, 165, 166, 170, 261, 365

emptyset
258

eq
197, 366

equivalent
200

eulergamma
259

exists
153, 166, 191, 261

exp
237

exponentiale
255

factorial
178

factorof
201

false
257

floor
196

fn
151, 260, 261, 366, 368

forall
153, 166, 188, 261

gcd
184

geq
199

grad
215

gt
198

ident
173

image
175

imaginary
195

imaginaryi
256

implies
187

in
19, 222

infinity
259

int
157, 201

integers
252

intersect
222

interval
127, 154, 165, 167, 168, 205, 261, 365

inverse
169

lambda
152, 153, 169, 229, 231

laplacian
216

lcm
195

leq
199

limit
231

list
136, 161, 162, 220

ln
238

log
127, 159, 238, 261, 366

logbase
154, 159, 238, 261, 272, 366

lowlimit
154, 202, 227, 229, 231, 261, 272, 365

lt
198

maction
27, 28, 32, 39, 56, 64, 71, 103, 105, 106, 123, 284,
358, 365

maligngroup
37, 38, 40, 63, 64, 71, 72, 96, 99, 102, 286, 357

malignmark
33, 37, 38, 40, 64, 65, 72, 96, 99, 102, 286, 355

math
15, 23, 31, 32, 33, 34, 35, 42, 49, 51, 124, 139, 270,
276, 277, 278, 279, 285, 287, 358, 364, 367

matrix
109, 136, 246, 261

matrixrow
246, 248, 261

max
163, 179, 261

mean
163, 240, 261

median
243

menclose
31, 32, 35, 38, 84, 106, 119, 365

merror
27, 31, 32, 38, 73, 149, 283

mfenced
32, 35, 38, 53, 65, 80, 103, 105, 106

mfrac
19, 20, 32, 34, 35, 38, 56, 68, 71, 74, 104, 118, 283,
284, 364

mglyph
27, 33, 37, 38, 40, 45, 47, 48, 65, 71, 134, 137, 140,
141, 289, 290, 364, 367

mi
23, 33, 35, 37, 40, 41, 42, 44, 45, 61, 62, 65, 105,
138, 141, 272, 284, 285, 291, 364

min
163, 180, 261

I Index (Non-Normative)

374

minus
143, 181, 262

mlabeledtr
32, 38, 71, 95, 98, 99, 101, 102, 107, 365

mlongdiv
32, 38, 84, 95, 111, 113, 114, 115, 116, 117, 368

mmultiscripts
32, 38, 56, 93, 106, 357, 365

mn
23, 33, 35, 37, 40, 41, 47, 105, 106, 115, 131, 272,
285

mo
23, 32, 33, 34, 35, 36, 37, 40, 41, 46, 47, 48, 61,
62, 63, 64, 65, 66, 67, 68, 71, 79, 81, 89, 90, 91, 92,
285, 293, 326, 356, 364

mode
243

moment
159, 244, 261, 366

momentabout
154, 159, 244, 261, 366

mover
32, 38, 50, 56, 59, 71, 90, 92, 93, 106

mpadded
18, 31, 32, 36, 37, 38, 56, 64, 71, 74, 79, 106, 365,
368

mphantom
31, 32, 36, 38, 51, 56, 63, 64, 79, 103, 106

mprescripts
30, 32, 93, 285, 357, 365

mroot
32, 34, 35, 38, 70, 106

mrow
16, 23, 29, 31, 32, 33, 35, 36, 38, 42, 49, 51, 55, 56,
57, 59, 60, 64, 65, 66, 67, 68, 70, 73, 74, 77, 79, 81,
82, 83, 84, 85, 101, 103, 104, 106, 150, 272, 326,
356

ms
23, 33, 38, 40, 41, 65, 285

mscarries
32, 38, 111, 112, 115, 116, 118, 368

mscarry
31, 32, 38, 111, 116, 118, 368

msgroup
32, 38, 111, 112, 113, 114, 115, 116, 117, 120, 121, 368

msline
38, 111, 112, 113, 117, 118, 123, 368

mspace
23, 31, 32, 35, 36, 37, 38, 40, 43, 51, 54, 55, 61, 63,
67, 71, 79, 102, 104, 105, 106, 293, 358, 367

msqrt
20, 31, 32, 35, 38, 70, 84, 106

msrow
32, 38, 111, 112, 113, 115, 116, 120, 123, 368

mstack
32, 38, 71, 72, 95, 111, 112, 113, 114, 115, 116, 117,
123, 365, 368

mstyle
19, 20, 23, 31, 32, 33, 34, 35, 38, 42, 49, 50, 51, 56,
64, 70, 82, 86, 103, 106, 113, 115, 327, 365

msub
32, 38, 45, 56, 87, 88, 106

msubsup
32, 38, 56, 88, 94, 106

msup
32, 33, 38, 45, 56, 64, 87, 88, 106

mtable
20, 32, 34, 35, 38, 59, 71, 72, 95, 99, 100, 101, 102,
104, 107, 109, 110, 112, 246, 367

mtd
31, 32, 38, 59, 71, 95, 99, 100, 101, 102, 103, 104,
107, 110

mtext
22, 33, 36, 38, 40, 41, 45, 48, 54, 61, 63, 64, 65,
104, 105, 106, 124, 136, 283, 284, 293, 294, 364

mtr
32, 38, 59, 71, 95, 99, 100, 101, 102, 104, 107, 110,
246

munder
32, 38, 50, 56, 59, 71, 89, 92, 93, 106

munderover
32, 38, 50, 56, 59, 71, 92, 106

naturalnumbers
254

neq
197

none
30, 93, 113, 115, 116, 117, 118, 120, 285, 357, 365

not
187, 366

notanumber
256

notin
223

notprsubset
225

notsubset
224

or
186

otherwise
152, 175, 261, 365

outerproduct
252

partialdiff
151, 159, 209

pi
134, 258

piece
152, 175, 261, 365

piecewise
152, 175, 261, 365

plus
143, 181, 227

power
182

primes
255

product
157, 183, 229, 261

I.1 MathML Elements

375

prsubset
224

quotient
177

rationals
253

real
194

reals
253

reln
151, 260, 261, 366, 368

rem
182

root
159, 183, 261

scalarproduct
251

sdev
241

sec
235, 366

sech
236, 366

selector
249, 262

semantics
37, 56, 103, 106, 125, 128, 136, 137, 145, 149, 262,
263, 265, 266, 267, 268, 269, 270, 272, 273, 276,
278, 279, 284, 286

sep
130, 131, 132, 356, 365

set
16, 127, 136, 161, 162, 217, 366

setdiff
225

share
128, 146, 260, 365, 368

sin
30, 127, 235, 366

sinh
236, 366

span
271

subset
223

sum
144, 157, 181, 227, 261

tan
235, 366

tanh
236, 366

tendsto
233

times
183, 229

transpose
248

true
257

union
221

uplimit
154, 202, 227, 229, 261, 272, 365

variance
242

vector
136, 161, 245, 261

vectorproduct
250

xor
187

I.2 MathML Attributes

In addition to the standard MathML attributes, some attributes from other namespaces such as Xlink or XML
Schema are also listed here.

accent
48, 50, 86, 89, 90, 92

accentunder
86, 89, 92

actiontype
32, 71, 123, 124

align
71, 89, 91, 92, 96, 112, 367

alignmentscope
97, 102, 109

alt
41, 71, 287, 290, 364

altimg
24

altimg-height
24

altimg-valign
24

altimg-width
24

alttext
24

background
20, 44

base
130, 131

baseline
368

bevelled
68

cd
27, 139, 140, 160, 168, 262, 264, 268, 269

I Index (Non-Normative)

376

cdgroup
24, 139

charalign
112, 113

charspacing
113

class
21

close
81

closure
168

color
28, 44

columnalign
71, 96, 99, 101, 103, 104, 110

columnalignment
100

columnlines
97

columnspacing
97

columnspan
59, 96, 101, 109

columnwidth
96, 97, 100

crossout
116, 117

decimalpoint
72, 106, 113

definitionURL
27, 139, 140, 160, 168, 260, 262, 264, 268, 269

denomalign
68

depth
63, 71, 75, 76

dir
23, 33, 42, 66, 103, 111

display
23, 25, 34

displaystyle
21, 23, 34, 50, 68, 70, 72, 86, 87, 88, 89, 90, 92,
94, 98, 116, 365

edge
104, 105

encoding
125, 260, 262, 264, 265, 266, 268, 269, 270, 277,
279, 285

equalcolumns
98

equalrows
98

fence
48, 49, 53

fontfamily
42, 44, 71

fontsize
44

fontstyle
44, 46

fontweight
44

form
49, 55, 56, 57, 66, 71, 79, 83, 326

frame
97

framespacing
97

groupalign
71, 96, 99, 102, 104, 106, 107, 110

height
41, 63, 71, 74, 76

href
21, 147, 149, 275, 285, 367

id
21, 64, 100, 145, 147, 273, 286, 367, 368

indentalign
51, 61

indentalignfirst
51

indentalignlast
52, 61

indentshift
51

indentshiftfirst
51

indentshiftlast
52

indenttarget
51, 365

index
42, 71

infixlinebreakstyle
72

integer
18

largeop
34, 50

leftoverhang
117

length
117, 367

linebreak
35, 50, 63

linebreakmultchar
51

linebreakstyle
21, 50, 326

lineleading
50

linethickness
68, 71

location
116, 117

longdivstyle
113, 121

lquote
65

lspace
49, 57, 71, 74, 75, 76, 326, 327

I.2 MathML Attributes

377

ltr
33, 43, 66

macros
25

mathbackground
23, 39, 41, 44, 71, 105, 106

mathcolor
39, 41, 44, 63, 68, 70, 71, 79, 81, 84, 96, 105, 106,
113, 116, 117

mathsize
20, 21, 34, 42, 43, 44, 60, 63, 71, 72, 287

mathvariant
37, 39, 40, 42, 44, 46, 47, 63, 291, 364

maxsize
49, 57, 58, 59, 60, 365

maxwidth
23

mediummathspace
72

minlabelspacing
98, 100

minsize
50, 57, 59, 60, 365

mode
25

movablelimits
21, 34, 50, 89, 90, 92

mslinethickness
118

name
264, 268, 269, 368

nargs
260

newline
63

notation
84

numalign
68

number
18

occurrence
260

open
81

order
220

other
22, 28

overflow
24, 35

position
112, 114, 115, 116, 117, 120, 121

rightoverhang
118

role
264

rowalign
59, 71, 96, 99, 101

rowlines
97

rowspacing
97

rowspan
59, 60, 96, 101, 109

rquote
65

rspace
49, 57, 327

schemaLocation
278

scope
260

scriptlevel
20, 23, 34, 68, 70, 72, 86, 87, 88, 89, 90, 92, 94,
98, 116, 327

scriptminsize
34, 72

scriptsize
116

scriptsizemultiplier
34, 72, 116

selection
124, 358

separator
48, 49, 53

separators
81

shift
112, 114, 115, 116, 117, 120

side
98, 99, 100

src
41, 42, 71, 147, 266, 268, 269, 279, 364

stackalign
112, 114, 115, 116, 117

stretchy
49, 57, 58, 71, 326

style
21

subscriptshift
87, 88

superscriptshift
88

symmetric
49, 57, 59, 365

thickmathspace
72

thinmathspace
72

type
130, 131, 136, 137, 138, 140, 157, 161, 162, 163, 217,
223, 225, 226, 233, 260, 262, 368

valign
41

verythickmathspace
73

verythinmathspace
72

veryverythickmathspace
73

I Index (Non-Normative)

378

veryverythinmathspace
72

voffset
71, 75, 76

width
41, 63, 71, 74, 75, 76, 96, 97, 365

xlink:href
22, 286

xml:lang
21

xml:space
22

xmlns
15, 270, 364

xref
21, 145, 273

I.2 MathML Attributes

379

This document has been amended as follows:

• The errata for MathML 3 Second Edition was reflected on this document.•

• The page number reference was given to Table of Contents.•

• MathML rendering images (GIF and PNG) were changed to MathML. However, some sample codes in the •
specification are not rendered as expected. They are as follows:

◦ Section 3.3.2 Fractions: the MathML example code is not rendered like the first sample image. In ◦
this document, MathML code is being rendered.

◦ Section 3.4.6 Underscript-overscript Pair: movablelimits="true" should be specified for the inte-◦
gral examples.

◦ The last example of Section 3.6.8.4 Repeating decimal needs to specify charalign="center".◦

◦ Section 4.4.4.1 Integral: Integrals in Sample Presentation are specified by <mi>. They should be ◦
<mo>.

• Some images were changed to SVG.•

• Some images of Sample Presentation were missing. They were supplemented.•

◦ Section 4.4.4.2 Differentiation◦

◦ Section 4.4.7.3 Common hyperbolic functions◦

◦ Section 4.4.7.4 Common inverses of hyperbolic functions◦

• The following typos were corrected:•

◦ Section 3.1.8 Warning about fine-tuning of presentation: the the same MathML◦

◦ Section 3.4.7.1 Description: the the base of the mmultiscripts◦

◦ Section 3.6.7.2 Attributes: Specifies the the number of columns◦

◦ Section 4.2.5.2 Rendering Applications: the the sample rendering◦

◦ Section 6.3.2 Recommended Behaviors when Transferring: in the the HTTP Accept header◦

◦ Section 6.4.2 Mixing MathML and non-XML contexts: <mfrac> and <mi">◦

◦ Appendix A.2.6 MathML as a module in a RelaxNG Schema: to collect the the content models◦

• Section 7.5 Mathematical Alphanumeric Symbols, Section 7.7 Anomalous Mathematical Characters: •
Unnecessary comments in MathML were removed.

◦ <mi>𝑎<!--MATHEMATICAL ITALIC SMALL A--><!--MATHEMATICAL ITALIC SMALL A-->

</mi>

◦ <mi>𝔄<!--MATHEMATICAL FRAKTUR CAPITAL A--><!--BLACK-LETTER CAPITAL A--></mi>

◦ <mo>′<!--PRIME--><!--PRIME--></mo>

• Appendix H References (Non-Normative): Removed the empty link.•

• Appendix I.2 MathML Attributes: Duplicate index items existed. They were removed.•

◦ indentalignfirst
◦ indentalignlast
◦ indentshift
◦ indentshiftfirst

• Appendix I Index were changed to refer to page number.•

380

	Mathematical Markup Language (MathML) Version 3.0 2nd Edition
	Abstract
	Status of this Document
	Table of Contents
	Appendices

	1 Introduction
	1.1 Mathematics and its Notation
	1.2 Origins and Goals
	1.2.1 Design Goals of MathML

	1.3 Overview
	1.4 A First Example

	2 MathML Fundamentals
	2.1 MathML Syntax and Grammar
	2.1.1 General Considerations
	2.1.2 MathML and Namespaces
	2.1.3 Children versus Arguments
	2.1.4 MathML and Rendering
	2.1.5 MathML Attribute Values
	2.1.6 Attributes Shared by all MathML Elements
	2.1.7 Collapsing Whitespace in Input

	2.2 The Top-Level <math> Element
	2.2.1 Attributes
	2.2.2 Deprecated Attributes

	2.3 Conformance
	2.3.1 MathML Conformance
	2.3.2 Handling of Errors
	2.3.3 Attributes for unspecified data

	3 Presentation Markup
	3.1 Introduction
	3.1.1 What Presentation Elements Represent
	3.1.2 Terminology Used In This Chapter
	3.1.3 Required Arguments
	3.1.4 Elements with Special Behaviors
	3.1.5 Directionality
	3.1.6 Displaystyle and Scriptlevel
	3.1.7 Linebreaking of Expressions
	3.1.8 Warning about fine-tuning of presentation
	3.1.9 Summary of Presentation Elements
	3.1.10 Mathematics style attributes common to presentation elements

	3.2 Token Elements
	3.2.1 Token Element Content Characters, <mglyph/>
	3.2.2 Mathematics style attributes common to token elements
	3.2.3 Identifier <mi>
	3.2.4 Number <mn>
	3.2.5 Operator, Fence, Separator or Accent <mo>
	3.2.6 Text <mtext>
	3.2.7 Space <mspace/>
	3.2.8 String Literal <ms>

	3.3 General Layout Schemata
	3.3.1 Horizontally Group Sub-Expressions <mrow>
	3.3.2 Fractions <mfrac>
	3.3.3 Radicals <msqrt>, <mroot>
	3.3.4 Style Change <mstyle>
	3.3.5 Error Message <merror>
	3.3.6 Adjust Space Around Content <mpadded>
	3.3.7 Making Sub-Expressions Invisible <mphantom>
	3.3.8 Expression Inside Pair of Fences <mfenced>
	3.3.9 Enclose Expression Inside Notation <menclose>

	3.4 Script and Limit Schemata
	3.4.1 Subscript <msub>
	3.4.2 Superscript <msup>
	3.4.3 Subscript-superscript Pair <msubsup>
	3.4.4 Underscript <munder>
	3.4.5 Overscript <mover>
	3.4.6 Underscript-overscript Pair <munderover>
	3.4.7 Prescripts and Tensor Indices <mmultiscripts>, <mprescripts/>, <none/>

	3.5 Tabular Math
	3.5.1 Table or Matrix <mtable>
	3.5.2 Row in Table or Matrix <mtr>
	3.5.3 Labeled Row in Table or Matrix <mlabeledtr>
	3.5.4 Entry in Table or Matrix <mtd>
	3.5.5 Alignment Markers <maligngroup/>, <malignmark/>

	3.6 Elementary Math
	3.6.1 Stacks of Characters <mstack>
	3.6.2 Long Division <mlongdiv>
	3.6.3 Group Rows with Similiar Positions <msgroup>
	3.6.4 Rows in Elementary Math <msrow>
	3.6.5 Carries, Borrows, and Crossouts <mscarries>
	3.6.6 A Single Carry <mscarry>
	3.6.7 Horizontal Line <msline/>
	3.6.8 Elementary Math Examples

	3.7 Enlivening Expressions
	3.7.1 Bind Action to Sub-Expression <maction>

	3.8 Semantics and Presentation

	4 Content Markup
	4.1 Introduction
	4.1.1 The Intent of Content Markup
	4.1.2 The Structure and Scope of Content MathML Expressions
	4.1.3 Strict Content MathML
	4.1.4 Content Dictionaries
	4.1.5 Content MathML Concepts

	4.2 Content MathML Elements Encoding Expression Structure
	4.2.1 Numbers <cn>
	4.2.2 Content Identifiers <ci>
	4.2.3 Content Symbols <csymbol>
	4.2.4 String Literals <cs>
	4.2.5 Function Application <apply>
	4.2.6 Bindings and Bound Variables <bind> and <bvar>
	4.2.7 Structure Sharing <share>
	4.2.8 Attribution via semantics
	4.2.9 Error Markup <cerror>
	4.2.10 Encoded Bytes <cbytes>

	4.3 Content MathML for Specific Structures
	4.3.1 Container Markup
	4.3.2 Bindings with <apply>
	4.3.3 Qualifiers
	4.3.4 Operator Classes
	4.3.5 Non-strict Attributes

	4.4 Content MathML for Specific Operators and Constants
	4.4.1 Functions and Inverses
	4.4.2 Arithmetic, Algebra and Logic
	4.4.3 Relations
	4.4.4 Calculus and Vector Calculus
	4.4.5 Theory of Sets
	4.4.6 Sequences and Series
	4.4.7 Elementary classical functions
	4.4.8 Statistics
	4.4.9 Linear Algebra
	4.4.10 Constant and Symbol Elements

	4.5 Deprecated Content Elements
	4.5.1 Declare <declare>
	4.5.2 Relation <reln>
	4.5.3 Relation <fn>

	4.6 The Strict Content MathML Transformation

	5 Mixing Markup Languages for Mathematical Expressions
	5.1 Annotation Framework
	5.1.1 Annotation elements
	5.1.2 Annotation keys
	5.1.3 Alternate representations
	5.1.4 Content equivalents
	5.1.5 Annotation references

	5.2 Elements for Semantic Annotations
	5.2.1 The <semantics> element
	5.2.2 The <annotation> element
	5.2.3 The <annotation-xml> element

	5.3 Combining Presentation and Content Markup
	5.3.1 Presentation Markup in Content Markup
	5.3.2 Content Markup in Presentation Markup

	5.4 Parallel Markup
	5.4.1 Top-level Parallel Markup
	5.4.2 Parallel Markup via Cross-References

	6 Interactions with the Host Environment
	6.1 Introduction
	6.2 Invoking MathML Processors
	6.2.1 Recognizing MathML in XML
	6.2.2 Recognizing MathML in HTML
	6.2.3 Resource Types for MathML Documents
	6.2.4 Names of MathML Encodings

	6.3 Transferring MathML
	6.3.1 Basic Transfer Flavor Names and Contents
	6.3.2 Recommended Behaviors when Transferring
	6.3.3 Discussion
	6.3.4 Examples

	6.4 Combining MathML and Other Formats
	6.4.1 Mixing MathML and XHTML
	6.4.2 Mixing MathML and non-XML contexts
	6.4.3 Mixing MathML and HTML
	6.4.4 Linking
	6.4.5 MathML and Graphical Markup

	6.5 Using CSS with MathML
	6.5.1 Order of processing attributes versus style sheets

	7 Characters, Entities and Fonts
	7.1 Introduction
	7.2 Unicode Character Data
	7.3 Entity Declarations
	7.4 Special Characters Not in Unicode
	7.5 Mathematical Alphanumeric Symbols
	7.6 Non-Marking Characters
	7.7 Anomalous Mathematical Characters
	7.7.1 Keyboard Characters
	7.7.2 Pseudo-scripts
	7.7.3 Combining Characters

	A Parsing MathML
	A.1 Use of MathML as Well-Formed XML
	A.2 Using the RelaxNG Schema for MathML3
	A.2.1 Full MathML
	A.2.2 Elements Common to Presentation and Content MathML
	A.2.3 The Grammar for Presentation MathML
	A.2.4 The Grammar for Strict Content MathML3
	A.2.5 The Grammar for Content MathML
	A.2.6 MathML as a module in a RelaxNG Schema

	A.3 Using the MathML DTD
	A.3.1 Document Validation Issues
	A.3.2 Attribute values in the MathML DTD
	A.3.3 DOCTYPE declaration for MathML

	A.4 Using the MathML XML Schema
	A.4.1 Associating the MathML schema with MathML fragments

	A.5 Parsing MathML in XHTML
	A.6 Parsing MathML in HTML

	B Media Types Registrations
	B.1 Selection of Media Types for MathML Instances
	B.2 Media type for Generic MathML
	B.3 Media type for Presentation MathML
	B.4 Media type for Content MathML

	C Operator Dictionary (Non-Normative)
	C.1 Indexing of the operator dictionary
	C.2 Format of operator dictionary entries
	C.3 Notes on lspace and rspace attributes
	C.4 Operator dictionary entries

	D Glossary (Non-Normative)
	E Working Group Membership and Acknowledgments (Non-Normative)
	E.1 The Math Working Group Membership
	E.2 Acknowledgments

	F Changes (Non-Normative)
	F.1 Changes between MathML 3.0 First Edition and Second Edition
	F.2 Changes between MathML 2.0 Second Edition and MathML 3.0

	G Normative References
	H References (Non-Normative)
	I Index (Non-Normative)
	I.1 MathML Elements
	I.2 MathML Attributes

