
Ant Quick Start Guide for DITA
Open Toolkit

1. Introduction to the DITA Open Tool-
kit and Ant

Understanding the role of DITA Open Toolkit and Ant for technical writers.

This section describes the role of DITA Open Toolkit, Ant, and when DITA-OT is a logi-
cal choice for your team.

1.1 Overview
Introducing the most important authoring tool since FrameMaker.

DITA-based writers gain numerous advantages using this powerful, single-source, docu-
ment solution. Indeed, I think of DITA as the Holy Grail of technical documentation, the
object for which many a manager has sent me on long, fruitless searches in the past, only
to return with half-hearted recommendations for a combination of tools that required
hours of manual tweaking to reproduce a document in just one alternative format.

Today, I can tell my manager that the Grail has been found, and I can produce a handful of
different document output types simultaneously. This is a breakthrough technology for
technical writers. In industry jargon, "single source" has previously meant writing in Fra-
meMaker, then importing your source into another expensive application to produce a sec-
ond output format, typically online help. To gain just a second format from the source of-
ten required tedious hours, sometimes days, massaging the text after it had been "transla-
ted" into an online help system. DITA-OT allows technical writers to produce seven out-
put formats at the same time.

However, several technologies make this magic happen. Motivated, or just curious, writ-
ers will want a more advanced understanding of what makes DITA tick. To do so, you
will need to learn how to write Ant build scripts for the DITA-OT and invoke them from
the command line.

• 1.3 What is Ant? on page 3

• 1.4 What is DITA-OT? on page 4

Hopefully, this guide will motivate you to study DITA-OT further and encourage your
publications team to implement a single-source, DITA-based documentation solution.

1

Introduction to the D
ITA

 O
pen Toolkit and A

nt

1. Introduction to the DITA Open Toolkit and Ant 1

1.2 About DITA-OT Toolkit Roles
Descriptions of the following user roles for the toolkit: CSS Customizers, Build Scripters,
and potentially End Users of third-party authoring tools.

If you don't know what a build script is, or whether your authoring tool should or does use
DITA OpenToolkit, you may be reading the right document in the in the DITA-OT docu-
mentation suite. User Roles are a useful way to present and approach the documentation,
enabling the reader to bypass information that is not relevant to the specific task she is
performing when this document is read. The followige roles are addressed in this guide:

• CSS Stylesheet Customizers

• Ant Build Scripters

• Online Help developers

Many readers may be unaware of the toolkit's presence, but it is the "engine" of whatever
writing tool you use to write and maintain XML-based, DITA-compliant content. CSS
Stylesheet Customizers read this guide when they are unable to specify custom style-
sheets, or .css files from their third-party authoring application. Build Scripters consult
this guide when the toolkit is unable to process an Ant build script. The Quick Start Guide
features an up-to-date tables of all supported parameters for both Ant and the Java com-
mand line interface, useful information if your documentation is generated automatically
as part of an automated daily build. As my first manager warned me long, long ago, 'The
howling hordes descend when the build breaks'.

If you need to fix a broken build, time is of the essence. If you know how to edit CSS
stylesheessor run Ant build scripts, then read on. If you don't recognize CSS and Ant,
you're likely an End User and you should refer to your third-party documentation. If like
the author, you also enjoy hacking with your tools this is definitely the guide for you. Al-
though the Quick StartGguide currently provides more information for build scripters than
css customizers, revisions will describe the use of XSLT and the new plugin architecture
for this audience. When your third-party authoring tool breaks down, this guide is the me-
chanic's manual you didn't know you had. If you're unafraid of a command line and will-
ing to "get your hands dirty" under the hood, an up-to-date, and maintained table of Ant
build properties can be the difference between a broken build and a bad day or a gently
purring build in a background chron chron job that never demands attention. If the build
has already broken by the time you read this, your may be the "build hero" who magically
"fixes" the build which no one cares about, except that it is usually only then that the fire-
breathing IT dragon returns to it's cave and everyone can relax again until the next "emer-
gency".

1.2 About DITA-OT Toolkit Roles 2

1.3 What is Ant?
Learning about the blurred line between code and documentation and why technical writ-
ers need to learn Ant.

If your DITA authoring tool uses the Open DITA Toolkit to generate your documents,
you're already using Ant. So, what is Ant, anyway? Ant is a build tool, a program used to
compile other programs. If you work as a writer in the enterprise software industry, you
know that software engineers regularly produce several versions of whatever software
they are working on before they release it to the public. Each compilation is called a
build. Dozens, sometimes hundreds, of builds are compiled before the RTM (release to
manufacturing) or GA (general acceptance) build is certified as the official release build.
You can often determine the release build of whatever software you are using by reading
the Help->About dialog box. For example, my version of XMetal is 5.5.0.219. This means
that build 219 was the official release build for XMetal, version 5.5.

Writers also draft, write, revise, and rewrite their documents many times before releasing
a document to the public. We tend to call these drafts, rather than builds. You probably
saved drafts of your documents in a document repository or CMS, a content management
sytem, in the past, but I doubt you thought of your draft, even though it was versioned by
the repository, as a software build that either compiled or failed to compile. A successful
document "build" meant only that a document opened in your authoring tool the next day,
not that all the related documents also opened successfully and "compiled" together to
produce a version, albeit incomplete, of the documentation that will eventually make its
way to your readers. Hence, the "build" metaphor did not extend beyond the programming
code in the engineers' cubicles to the documents crafted by the writers.

DITA changes that forever; the build metaphor is as relevant to you as to the engineers.
Behind the user interface of your authoring tool, the DITA Open Toolkit uses Ant to com-
pile a build every time you try to generate your single-source documents. If you want to
customize the way DITA-OT generates your documents, you will need to open the hood,
so to speak, and get your hands dirty with the internals of the Toolkit and Ant.

1

Introduction to the D
ITA

 O
pen Toolkit and A

nt

1.3 What is Ant? 3

1.4 What is DITA-OT?
What is the DITA Open Toolkit, anyway?

The DITA Open Toolkit is a popular, free, open-source tool used to transform DITA docu-
ments and maps into the output document formats you desire. In fact, most of the propri-
etary authoring tools use the DITA-OT to transform DITA documentation projects, so you
aren't wasting your time learning about how it works. Many errors are more quickly fixed
if you understand what the toolkit is doing "beneath the hood" of your authoring tool.

DITA-OT uses Ant to generate your documents. The primary ant script is build.xml,
which imports several other build scripts to initialize, validate, and transform your .dita
documents.

See 3.1 Introducing Document Generation on page 11 for more information about how
DITA-OT processes documents.

 RELATED LINKS
1.3 What is Ant? on page 3

1.4 What is DITA-OT? 4

1.5 When Should I Use DITA-OT?
Determining when DITA OT makes sense for your team.

There a several scenarios where using DITA-OT is the appropriate choice for your docu-
mentation team, and describing them all is beyond the scope of this guide. However, here
are three simple criteria where DITA-OT provides the best solution:

• Your documentation suite contains a lot of content that is reusable for different docu-
ments and audiences.

• Your documentation suite contains documentation for developers using the Eclipse
IDE.

• Your documentation suite includes both Microsoft HTML Help and PDF-based docu-
ments.

DITA-OT is the only publication tool capable of producing both PDF and Eclipse-based
documentation from the same source. Eclipse is the industry-standard IDE for many Java
developers, and DITA-OT generates the the content and plugin file required for this envi-
ronment. If your developer audience uses Eclipse, you can easily add IDE-specific online
help to your documentation suite.

If your primary audience is end users, rather than software developers and system admin-
istrators, you likely need to provide Microsoft HTML Help for them, in addition to PDF-
based documentation. DITA-OT is the only tool that produces both from the same source
files.

1

Introduction to the D
ITA

 O
pen Toolkit and A

nt

1.5 When Should I Use DITA-OT? 5

2. Running DITA Open Toolkit
Learn how to run DITA-OT to generate published output documents.

2.1 Generating Documents with Ant
How to generate documents from the command line with Ant.

1. Open a command prompt.

2. Change directories to where the DITA-OT is installed on your machine.

3. Set up the processing environment.

Enter the following command:

startcmd.bat

Another command prompt appears with DITA-OT in the title bar, as shown in the fol-
lowing figure:

4. Run a convertion to a transformation output type.

Enter the following command and press the Enter key:

ant -Dargs.input=source -Dtranstype=transtype

The following table describes this command.

Syntax Description

ant Starts the Ant build tool installed as part of DITA-OT.

2. Running DITA Open Toolkit 6

Syntax Description

-Dargs.input=source The source specifies the DITA topic or map to process. If the build
file is not in the current directory, you must specify the path to the file.

-Dtranstype=format The format specifies the transformation output type to generate.

To build XHTML output for the sample DITA map samples\hierarchy.ditama
p, run the command:

ant -Dargs.input=samples\hierarchy.ditamap -Dtranstype=xhtml

DITA-OT displays a lot of output in the console window, including whether the build
failed or succeeded at the end of the output.

When your build is unsuccessful, the error message may be difficult to find in the co-
pious output. If you have not configured your console window most of the early out-
put may have already scrolled off the screen. If you add an Ant property, -l log-fil
e to the command line invocation, DITA-OT will save the output to a log file that you
can study after the build finishes.

2

R
unning D

ITA
 O

pen Toolkit

2.1 Generating Documents with Ant 7

2.2 Writing more complex Ant build files for
the DITA-OT

The sample Ant build scripts provided by the DITA-OT may not be adequate to meet the
needs of your project. This topic describes how to customize the default scripts and write
your own.

● Customizing the Default Ant Script
The DITA Open Toolkit contains sample build files for both the DITA-OT and sample
documentation. Writers new to the toolkit may use the sample_all.xml Ant build script
to create all the sample documents that come with DITA-OT. The toolkit also contains
build scripts for individual ouput types, such as sample_pdf.xml. You can modify just
one or two Ant properties in these scripts for your own documentation.

Here is the Ant project definition from samples\ant_sample\template_pdf.xml.

<project name="@PROJECT.NAME@_pdf" default="@DELIVERABLE.NAME@2pdf
" basedir=".">

 <property name="dita.dir" location="${basedir}${file.separator}..
${file.separator}.."/>

 <target name="@DELIVERABLE.NAME@2pdf">
 <ant antfile="${dita.dir}${file.separator}build.xml">
 <property name="args.input" location="@DITA.INPUT@"/>
 <property name="output.dir" location="@OUTPUT.DIR@"/>
 <property name="transtype" value="pdf"/>
 </ant>
 </target>

</project>

You simply change the values of the following properties to match the values used in your
project:

• Project name: The root element in an Ant build file.

• Target name: Must be one of the supported DITA-OT transtypes.

Note that these scripts assume that your input files are located in same directory structure
used by the DITA-OT samples.

● Writing Your Own Ant Script
The default build script may not meet the needs of your project for a range of reasons:

• You want to add additional Ant properties not used in the sample template, such XSL
and DTD properties to assist your debugging efforts.

• Your content files may not have the same directory structure as the samples.

• You want to place the output files in a different directory.

2.2 Writing more complex Ant build files for the DITA-OT 8

You need to customize or write your own build file for these use cases. For example, each
target for this guide's build script uses a separate value for dita.temp.dir to assist de-
bugging for a specific output types; setting clean.temp to "no" ensures that the temp di-
rectories remain available when processing ends.

Here is an example Ant script that can be used to produce this document.

<?xml version="1.0" encoding="utf-8"?>
<project name="userguide" default="dita2pdf" basedir=".">

 <property environment="env"/>
 <property name="DITA_DIR" value="${env.DITA_DIR}"/>
 <property name="args.logdir" value="logs"/>

 <property name="dita.extname" value=".dita"/>

 <property name="outdir" location ="output"/>
 <property name="clean.temp" value="no"/>

 <property name="args.indexshow" value="no"/>

 <target name="dita2pdf">
 <ant antfile="${DITA_DIR}/build.xml">
 <property name="transtype" value="pdf"/>
 <property name="args.input" value="doc/userguide-book.ditamap
"/>
 <property name="dita.temp.dir" value="${outdir}/temp_pdf"/>
 <property name="output.dir" value="${outdir}/pdf"/>
 <property name="outer.control" value="quiet"/>
 <property name="clean.temp" value="no"/>
 </ant>
 </target>

</project>

This script is designed to run from the DITA-OT main directory. The generated PDF file
will be placed in the DITA-OT/output/pdf/ directory. The temporary processing direc-
tory will be left behind in DITA-OT/output/temp_pdf/.

To run this script, save it in the root toolkit directory with a name like my_test_pdf.xm
l. Run the build with the following command (assuming your command shell is already
set up):

ant -f my_test_pdf.xml

contains a list of Ant properties used by DITA-OT. Use these properties to customize your
document's build script for your needs.

 RELATED LINKS

2

R
unning D

ITA
 O

pen Toolkit

2.2 Writing more complex Ant build files for the DITA-OT 9

2.3 Generating Documents with command-
line tool

How to generate documents from the command line with the DITA-OT command-line
tool.

The DITA Open Toolkit provides a command-line tool to run document conversions.
However, the command-line tool is a wrapper for the Ant interface, so you still must in-
stall Ant. In addition, only a subset of the Ant properties are supported by the command-
line tool

1. Open a command prompt.

2. Change directories to where you installed the DITA Open Toolkit.

3. Set up the processing environment.

Enter the following command:

startcmd.bat

4. Run a convertion to a transformation output type.

Enter the following command:

java -jar lib/dost.jar [arguments]

Three arguments are required:

/i:source
defines the location of the .ditamap file for your document

/outdir:output-dir
defines the director where the output resides after DITA-OT finishes processing
your project

/transtype:format
defines the type of document you want to generate for the project.

For example, the following command instructs DITA-OT to build the samples/seq
uence.ditamap as a PDF in the out directory:

java -jar lib/dost.jar /i:samples/sequence.ditamap /outdir:out
/transtype:pdf

 RELATED LINKS

2.3 Generating Documents with command-line tool 10

3. Debugging DITA-OT Transforma-
tions

Transforming your DITA-compliant XML into documents.

Understanding the Role of the FO PlugIn. Debugging FO-generated tranformation files.

3.1 Introducing Document Generation
Learning the mechanics of document generation with DITA OT.

Your documentation project uses an Ant build script, which calls a target in another Ant
build script in the DITA-OT root directory, which imports another Ant build script, which
itself imports several more Ant build scripts. Sound confusing? This topic explains this
interaction and explains how to identify targets in these scripts related to errors in your
document generation.

Each target in the build script for this Quick Start Guide contains the following code snip-
pet.

<ant antfile="${dita.dir}/build.xml" target="init">

The toolkit_dir directory is the root directory where you installed DITA-OT.

The build file you should understand is build.xml, located in folder bound to dita.dir
property. The Ant targets defined and imported into this script are the same targets that
you see on the console as your build script runs.

DITA-OT Build Script Description

build_init.xml Starts the document transformation, initializes the DITA-OT
logger, verifies that the toolkit can locate the files and directo-
ries that you specified in your build file, and prints these values
to the console and the log file, if you have specified one.

build_preprocess.xml Validates your content files, generates lists of input files, in-
cluding internal elements distributed across all content, such as
index and conref entries. Moves copies of these files and ele-
ments into the the directory specified by output.dir property
in your build script.

build_general.xml, build_dit
a2wordrtf.xml, build_dita2xh
tml.xml, build_dita2eclipseh
elp.xml, build_dita2javahelp
.xml, build_dita2htmlhelp.xm
l, build_dita2pdf

Output specific Ant files which are not intended to be run di-
rectly.

Your console displays the name of each Ant target called inside the build scripts, includ-
ing the output-specific script. For example, the following screen shot displays the names
of Ant targets contained in the build.xml script when PDF transtformation type is used.

3

D
ebugging D

ITA
-O

T Transform
ations

3. Debugging DITA-OT Transformations 11

When you see an error in the output, you should read the Ant target that generated it for
clues to solve the problem. To learn more about what caused the INFO, SEVERE, and WARN
ING errors in the image above, you should read the transform.fo2pdf.fop Ant target
to learn what the Toolkit was doing when the error occurred and which xsl file generated
the error.

Note
The DITA-OT build scripts sometimes continue to run even if they are unable to generate a tem-
porary file for one of your content files. The build later displays an error message stating that a
DITA-OT build script cannot find a generated file. This error is often misleading; the problem
may be that your content file contains an error other than XML validation, which would stop the
DITA-OT build from proceeding.

DITA-OT uses a separate set of Ant targets to process your PDF if you specify a value for
the args.fo.userconfig property in your document's build script.

3.1 Introducing Document Generation 12

4. Best Practices
Tips and tricks for working directly with the DITA OT.

● Create targets only for document types that you need.
DITA-OT's most attractive feature is its ability to produce so many different types of
documents from the same source files. However, you may find that you need to tweak the
targets in your Ant build file to get a document to meet your customization and style
guide requirements. Although the sample documents for DITA-OT ship with every availa-
ble target, there is no point in ironing out the details of a dita2rtf target in your build
file if your documentation set doesn't require Word-based documents. If you're not provid-
ing JavaHelp, troff, or .rtf, then don't create targets for them.

● Place all content inside or within the map directory if HTML Help is
one of your output types.
The HTML Help Compiler cannot compile the files generated by DITA-OT for source
files that reside outside the folder where your .ditamap file resides. If your documenta-
tion suite contains HTML Help, you should place all your source files in or below this
directory.

● For advanced debugging, use a different temp folder for each docu-
ment type within the same build.
The Ant build script for the DITA-OT samples uses a unique folder for each build. How-
ever, many builds will include multiple targets, and some of these targets generate over-
lapping intermediate files. Specify a unique temp directory for each target within the same
build to be sure that the intermediate files that you are reading were generated for the tar-
get you're debugging. See the build file for this document for an example.

4

B
est Practices

4. Best Practices 13

	1. Introduction to the DITA Open Toolkit and Ant
	1.1 Overview
	1.2 About DITA-OT Toolkit Roles
	1.3 What is Ant?
	1.4 What is DITA-OT?
	1.5 When Should I Use DITA-OT?

	2. Running DITA Open Toolkit
	2.1 Generating Documents with Ant
	2.2 Writing more complex Ant build files for the DITA-OT
	2.3 Generating Documents with command-line tool

	3. Debugging DITA-OT Transformations
	3.1 Introducing Document Generation

	4. Best Practices

