
XSLT and XSL FO Toolbox
of Tips and Tricks

Tony Graham
Antenna House, Inc.
tgraham@antenna.co.jp
tony@antennahouse.com
http://www.antennahouse.com

Version 1.2 – 5 June 2015

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

http://www.antennahouse.com

XSLT and XSL FO Toolbox
of Tips and Tricks

Extended Example: UDHR in Unicode 5
Discovery 9
Mapping 16
Implementation 17
When Are You Done? 52
Summary 54
Appendix A – About 55
Exercises 56

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

3

Antenna House, Inc.

4 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Learning Objectives 1

• Work through a small FO project
• See ways of doing things

We’ll be working through a complete sample project to illustrate the process of
developing a stylesheet for formatting XML using XSL FO.

Outline 2

• Introducing the extended example
• Discovery
• Mapping
• Implementation

Purely for the sake of convenience, the project has been divided into three stages –
discovery, mapping, and implementation. Real-life projects are seldom as clean-cut as
that.

Extended Example: “UDHR in Unicode” 3

• Working through making FO for “UDHR in Unicode”
• UDHR = UN “Universal Declaration of Human Rights”
• Unicode = big character set
• UDHR in Unicode = text in lots of languages
• See http://www.unicode.org/udhr/

The sample project is formatting “UDHR in Unicode”.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

5

http://www.unicode.org/udhr/

Why “UDHR in Unicode”? 4

• Simple structure
• Largish set of samples
• Example PDFs available
• HTML stylesheet available

“UDHR in Unicode”, with its about 400 translations of the UDHR, makes a useful sample
because it is large enough to be realistic but simple enough that we can cover the
important features in the time available.
The measles on the map represent locations for the scripts covered by “UDHR in
Unicode”. If the map showed areas rather than points, a lot more of it would be
covered since, for example, Australia would be shaded for English. The dots in Antartica
represent languages, such as Esperanto, that aren't specific to any region.

1948 and All That 5

• UDHR adopted 10 December 1948
• Designed to give meaning to “fundamental freedoms” and “human rights” phrases in

UN Charter
• Not universally liked
• Guinness World Record as “Most Translated Document”

The Universal Declaration of Human Rights was adopted in 1948 to back up some of
the phrases in the UN charter.

Antenna House, Inc.

6 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

“UDHR in Unicode” XML Files 6

• index.xml

• Metadata about translations
• References to translation files

• udhr_*.xml

• Text of UDHR in one language and script

There are two sorts of files in the XML produced by the “UDHR in Unicode” project:
• The single index.xml file contains metadata about all of the other per-language/script

files.
• There’s one XML for every language/script covered by “UDHR in Unicode”. Most

contain the full text of the UDHR, but some are only partially complete.

index.xml and UDHR XML Files 7

<udhr lang="zul" language="Zulu">
 <title>UMBHALO OGCWELE WOGUNYAZO
 LWAMALUNGELO OLUNTU JIKELELE</title>
 ...

udhr_zul.xml

<udhrs>
 <udhr l=’abk’ .../>
 <udhr l=’eng’ .../>
 <udhr l=’jpn’ .../>
 <udhr l=’zul’ .../>
</udhr>

index.xml <udhr lang="eng" language="English">
 <title>Universal Declaration of Human
 Rights</title>
 ...

udhr_eng.xml

<udhr lang="abk" language="Abkhaz">
 <title>Ауаҩытәыҩса изинқәа Зегьеицырзеиҧшу
 Адекларациа</title>
 ...

udhr_abk.xml

<udhr lang="jpn" language="Japanese">
 <title>『世界人権宣言』</title>
 ...

udhr_jpn.xml

This illustrates the correspondence between elements in index.xml and the per-
language/script XML files.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

7

Per-translation Metadata in index.xml 8

<udhrs
 ...
 <udhr
 l='zul' iso639-3='zul'
 uli='zu' bcp47='en'
 ohchr='zuu' stage='4'
 pdf='y' notes='y'
 loc='-28,29' country='ZA'
 region='Africa' demo='n'
 n='Zulu'/>
</udhrs>

The index.xml metadata for Zulu.

<udhr> Attributes 9

Attribute Description
l='zul' Ethnologue (15th Ed.) language identifier
iso639-3='zul' ISO 639-2 Alpha-3 language code
uli='zul' Unicode language identifier
bcp47='zu' IETF BCP 47 language tag
ohchr='zuu' UN OHCHR language identifier
stage='4' “Degree of progress” (1–5)
pdf='y' Whether “UDHR in Unicode” has produced PDF
notes='y' Whether there’s additional notes about the translation
loc='-28,29' Map reference
country='ZA' ISO 3166 country code
region='Africa' Geographic region
demo='n' ???
n='Zulu' Language name

Antenna House, Inc.

8 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

udhr_zul.html 10

<udhr lang="zul" language="Zulu"
 xmlns="http://www.unhchr.ch/udhr">
 <title>UMBHALO OGCWELE WOGUNYAZO LWAMALUNGELO OLUNTU
JIKELELE</title>
 <preamble>
 <title>Isandulelo</title>
 <para>Ngokunjalo ukwamukelwa ngokuzuzwa kwesithunzi
samalungelo alinganayo najwayelekile awowonke amalunga
omndeni wesintu kuyisisekelo senkululeko, sobulungiswa
noxolo emhlabeni,</para>
 ...
 </preamble>
 <article number="1">
 <title>Isigaba 1</title>
 <para>Bonke abantu bazalwa bekhululekile belingana
ngesithunzi nangamalungelo. Bahlanganiswe wumcabango
nangunembeza futhi kufanele baphathane ngomoya
wobunye.</para>
 </article>
 ...
</udhr>

An excerpt of the UDHR in Zulu with “UDHR in Unicode” markup.

Discovery 11

• Finding what’s in the source documents
• What contains what
• What attribute values are used

The first phase in a typical XSL FO project is discovering what you have to work with.
Even when you have a schema, it’s helpful to have a number of sample documents so
you can see what’s actually used. There’s little point implementing everything in the
schema if only 10% of it is actually used.
The schema may allow nested structures – e.g., lists within lists, tables within tables,
lists within paragraphs within lists within paragraphs – and it’s helpful to know how
many of those you have to support, and just as importantly, which combinations you’re
unlikely to have to support.
The schema may define attributes or elements as containing only text, but the actual
documents may contain only certain values that you will have to handle properly.
And, of course, you may be dealing with well-formed XML for which there is no
schema.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

9

How To Find? 12

• Inspect the samples
• Search using grep or similar
• Generate a schema
• Use XQuery

The simplest way to discover what’s in your source documents is just to look at them,
particularly if you have samples of a style that you have to reproduce. You may, indeed,
find details that you won’t find any other way, but it’s hard to properly examine a lot of
samples just by looking at them.
You can, for example, use grep to search for strings in the source documents, but grep
isn’t XML-aware.

Multi-file Search in XML Editor 13

You may be able to do XML-aware searches across multiple files from within your XML
editor.

Antenna House, Inc.

10 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Generate a Schema 14

• Let a schema generator do the work for you
• May find more than you can by inspection
• Real schema says what’s allowed
• Sometimes you just want what’s used

• May plan to throw error message for unexpected

Your XML source may already conform to a schema, but the XML that you’ll be working
with may use only a subset of what’s allowed. If you can find out what’s actually used,
then you can avoid implementing styles that will never be used.

trang 15

trang file.xml schema.rnc

trang *.xml schema.dtd

• Written by James Clark
• One or more input files
• Output as DTD, W3C XML Schema, or RelaxNG
• Run using oXygen schema generator when too many input files for command-line

trang is probably the most commonly used tool for generating a schema from a set of
source documents.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

11

Generated RNC Schema for index.xml 16

start =
 element udhrs {
 element udhr {
 attribute bcp47 { text },
 attribute country { text },
 attribute demo { xsd:NCName },
 attribute iso639-3 { text },
 attribute l { xsd:NMTOKEN },
 attribute loc { text },
 attribute n { text },
 attribute notes { xsd:NCName },
 attribute nv { xsd:NMTOKEN }?,
 attribute ohchr { text },
 attribute pdf { xsd:NCName },
 attribute region { text },
 attribute stage { xsd:integer },
 attribute uli { text },
 attribute v { xsd:NMTOKEN }?
 }+
 }

This is a good start. We now know that @nv and @v are not always present. trang was
able to detect, for example, that @l has a restricted range of values, but we already
know just by looking that some of the attribute have more specific values than trang
shows.

Exercise 1 – Using Trang 17

Use Trang to generate a schema for all the udhr_*.xml files.

XQuery 18

When you have many sample documents:
• Load samples into XML database
• Query to see what you’ve got
• Often simpler than doing it in XSLT and/or grep

XQuery is useful for using XPaths over multiple documents to find out exactly what’s in
them.

Antenna House, Inc.

12 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Sample XQuery Processors 19

• Saxon
• Open source Saxon HE works okay
• Reads all the files every time
• Queries in external files

• MarkLogic
• Not open source
• Need to have server running
• Ad-hoc queries through cq web form

• eXist-db
• Open source
• Need to have server running
• Ad-hoc queries through eXide shell

• BaseX
• Open source
• Don’t always need to have server running
• Ad-hoc queries through GUI

A very incomplete list of available XQuery processors.

What to XQuery? 20

• Counts of occurrences
• Distinct values of an attribute
• Whether things always occur together
• Base URI of interesting files so you can eyeball the XML

What you look for using XQuery will obviously depend on your particular XML. It’s
often useful to get the base URI of files that exhibit the particular features that you
have to handle. By also looking at the XML for those files, you may notice patterns in
the markup that you would have trouble noticing if you only fish through the files
using XQuery.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

13

Saxon XQuery Example 21

Find the region names used in index.xml

for $region in distinct-values(/udhrs/udhr/@region)
order by $region
return concat("'",$region,"'
")

java -cp saxon9he.jar net.sf.saxon.Query -s:index.xml regions.xq

''
'Africa'
'America'
'Americas'
'Asia'
'Europe'
'Other'
'Pacific'

XQuery, command line to run, and output from Saxon.

XQuery Example 22

Find the UDHRs with multiple <note>

for $udhr in collection()/
udhr:udhr[count(udhr:note) > 1] return base-uri($udhr)

/udhrs/udhr_cjs.xml
/udhrs/udhr_gla.xml
/udhrs/udhr_ido.xml
/udhrs/udhr_mai.xml
/udhrs/udhr_oss.xml
/udhrs/udhr_rar.xml
/udhrs/udhr_san.xml
/udhrs/udhr_urd.new.original.xml
/udhrs/udhr_urd.xml
/udhrs/udhr_ydd.xml

Sample XQuery and the result from running the XQuery in an XML database.

Antenna House, Inc.

14 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

eXist XQuery Example 23

Find the UDHRs with multiple <note>:

The result of running an XQuery in the eXide application that comes with eXist.

Exercise 2 – XQuery 24

Find the length of the longest udhr:listitem/@tag value.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

15

Mapping 25

• Specification of how input maps to output
• Useful for:

• Telling what to write
• Checking completeness of transform
• Writing tests

• Complexity depends on size of project
• Get someone else to do it
• Needs to be kept up to date!
• XML → XML usually simpler, fewer details than XML → styles

When the project is large enough to warrant the effort, particularly when there’s
multiple people working on the project, it can be useful to document the mapping
between the source XML and the desired output.
However, the mapping needs to be kept up to date as decisions change.

How to Write a Mapping? 26

• Narrative text
• Narrative text in XML

• Markup for input and output contexts
• Run transforms to check everything covered

• Spreadsheet
• Input context and output specification in different columns in same row

How you write the mapping depends on the conventions of your organization and on
the complexity of the mapping.

Antenna House, Inc.

16 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Sample Mapping 27

• udhrs becomes fo:root
• udhr:udhr becomes fo:page-sequence
• udhr:udhr/udhr:title becomes fo:block

• font-size: 2em
• font-weight: bold
• space-after: 12pt

• Other udhr:title become fo:block:
• font-weight: bold
• space-before: 3pt
• space-after: 6pt

• udhr:orderedlist becomes fo:list-block:
• provisional-distance-between-starts: 15pt
• provisional-label-separation: 5pt
• space-before: 6pt
• space-after: 6pt

A partial mapping of “UDHR in Unicode” XML to FO styles.

Implementation 28

• “Successive approximation” or “progressive refinement”
• Re-use
• Parameterise

Even when you have a comprehensive mapping, it’s more usual to start with some
basic styles and build on that than it is to write the entire stylesheet before running any
of it.
As you build up your stylesheet, look for ways to reuse templates, often by replacing
hard-coded property values with parameter references and by passing different
parameter values to the templates each time they are used.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

17

Working From Designer’s Design 29

• Probably won’t cover every context
• Try to use same application as used by designer
• Use ruler in application or PDF viewer

If you have them, the design documents or mockup samples produced by the designer
can be very useful for finding specific details about font sizes, leading, etc. However,
the documentation and samples probably won’t cover every context that your
stylesheet will have to handle. Also, samples often show the ideal case and may provide
few clues about how to handle text that is either much shorter or much longer than in
the sample.
The designer might not have documented every aspect of the design that can be
represented using FOs and properties. You may, however, be able to open the sample
in an application that will let you find some of the values that you need. When all else
fails, you can still use a ruler and pencil!

Stylesheet Stage 1 30

• Plain title page
• One fo:page-sequence per translation
• One fo:block per translation
• No table of contents
• Reused existing page layout
• 1175 pages for all translations

When developing the sample application, the first iteration just reused the page
masters from some previous work and simply produced one fo:page-sequence per
translation. The result wasn't at all pretty, but at this point it wasn’t expected to be
pretty.

Antenna House, Inc.

18 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Initial Output 31

Stylesheet Stage 2 32

• fo:block for every title and paragraph
• Writing mode depends on language
• 1520 pages for all translations

In the next iteration, after a bit more development time, the text is broken into
separate blocks and the stylesheet sets the writing mode depending on the current
language.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

19

rl Writing Mode 33

Arabic and some other scripts are written right-to-left.

Antenna House, Inc.

20 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Text Direction 34

• English is written left-to-right
• Some other languages aren’t (or aren‘t always)

English

Hebrew

Japanese Japanese
Left to right

Left to right

Right to left

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

21

Mixed Text Direction 35

• Right-to-left text in left-to-right
• Left-to-right text in right-to-left
• Works according to Unicode BIDI algorithm

• Used by (nearly) everything that uses Unicode
• Including web browsers
• Including XSL FO

• Override using markup or special characters when BIDI algorithm isn’t what you want
• Overall text direction still set by overall writing mode

• E.g., right-to-left text in left-aligned paragraph

Text direction isn’t always entirely one way or entirely the other. XSL FO follows the
rules of the Unicode BIDI algorithm for how to handle a run of text in one direction
that is nested in a run of text in the other direction.
When the Unicode BIDI algorithm does not give the desired result, it’s possible to use
XSL FO markup to override the automatic behavior.

Writing Mode in XSL 1.1 36

• Settable on FOs that always generate a reference area
• And fo:table to set row and column order

Applies to:
• fo:page-sequence
• fo:simple-page-master
• fo:region-body
• fo:region-before
• fo:region-after
• fo:region-start
• fo:region-end
• fo:block-container
• fo:inline-container
• fo:table

In XSL FO, the writing mode can be set only on the FOs that generate a reference area
and also on fo:table, since table columns are read right-to-left in right-to-left scripts.

Antenna House, Inc.

22 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Writing Mode: The Story So Far 37

Initial stylesheet:
• Default initial writing mode: lr-tb

Current stylesheet:
• fo:page-sequence/@writing-mode from udhr:udhr/@lang
• Three letter codes not widely used
• May be some unimplemented by current browsers, etc.
• Codes with variants even less likely to be understood
• Reworked code from udhrs2html.xsl

There may be “UDHR in Unicode” files for languages and scripts that the FO processor
does not natively support, so the writing mode is being set explicitly by using a lookup
on the three-letter language code that “UDHR in Unicode” uses as the primary
language identifier. The lookup is based on similar code in the “UDHR in Unicode”
stylesheet for producing HTML.

Setting Writing Mode 38

<xsl:template match="udhr:udhr">
 <fo:page-sequence master-reference="PageMaster"
 writing-mode="{m:writing-mode(@lang)}"
 initial-page-number="auto-odd">
 ...
 </fo:page-sequence>
</xsl:template>

<xsl:function name="m:writing-mode" as="xs:string">
 <xsl:param name="lang" />

 <xsl:sequence
 select="if ($lang = ('heb', 'arb', 'pnb', 'skr',
 'ydd', 'pes', 'urd', 'pbu',
 'mly_arab', 'uig_arab',
 'aii', 'div'))
 then 'rl'
 else 'lr'" />
</xsl:function>

Stylesheet except showing the writing-mode lookup.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

23

Stylesheet Stage 3 39

• Bold titles
• May be culturally inappropriate
• Bold fonts not always available
• Official “UDHR in Unicode” uses only medium weight
• But makes the exercise more interesting

• Space between blocks
• Lists
• 1767 pages for all translations

The third iteration added bold titles and more space around the blocks of text. It’s
possible that there’s languages/scripts for which bold titles are culturally inappropriate
or simply unavailable, but the purpose of the example project is to demonstrate FO
processing.

Titles and List Items in Zulu 40

The next few slides cover formatting lists and use this as their example.

Antenna House, Inc.

24 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

List Detail 41

A close-up of two list items. This is a screenshot from AH Formatter GUI with both area
outlines and rulers enabled.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

25

fo:list-block 42

<xsl:param name="ordered-list-separation" select="'15pt'"/>
<xsl:param name="ordered-label-separation" select="'5pt'"/>

<xsl:template match="udhr:orderedlist">
 <fo:list-block
 space-before="6pt"
 space-after="6pt"
 provisional-distance-between-starts=
"{$ordered-list-separation} + {$ordered-label-separation}"
 provisional-label-separation=
"{$ordered-label-separation}">
 <xsl:apply-templates/>
 </fo:list-block>
</xsl:template>

A list is formatted in XSL FO using an fo:list-block. The fo:list-block contains one or
more fo:list-item, and each fo:list-item contains an fo:list-item-label and an
fo:list-item-body.
This is the template producing the fo:list-block.
This is also an example of using parameters and calculations rather than hard-coding
values.

Antenna House, Inc.

26 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Formatted fo:list-block 43

space-before

space-after

provisional-
distance-

between-starts

provisional-label-separation

The same screenshot with the area generated by the fo:list-block highlighted and
with properties indicated. Note that provisional-label-separation and provisional-
distance-between-starts do not set the lengths that they indicate. Instead, the
properties' values can be used by descendant fo:list-item-label and fo:list-item-
body to produce areas with the dimensions indicated.

fo:list-item 44

<xsl:template match="udhr:listitem">
 <fo:list-item space-before="3pt"
 relative-align="baseline">
 <fo:list-item-label ...>
 ...
 </fo:list-item-label>
 <fo:list-item-body ...>
 ...
 </fo:list-item-body>
 </fo:list-item>
</xsl:template>

An abbreviated version of the template for udhr:listitem.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

27

Formatted fo:list-item 45

space-before

relative-align="baseline"

The screenshot with the areas generated by the two fo:list-item highlighted.

fo:list-item-label 46

<fo:list-item-label
 end-indent="label-end()"
 start-indent="{$ordered-label-separation}">
 <fo:block>
 <xsl:choose>
 <xsl:when test="exists(@tag)">
 <xsl:value-of select="@tag"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:number format='1.'/>
 </xsl:otherwise>
 </xsl:choose>
 </fo:block>
</fo:list-item-label>

The portion of the previous xsl:template that produces the fo:list-item-label.

Antenna House, Inc.

28 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Formatted fo:list-item-label 47

end-indentstart-
indent

The screenshot with the areas generated by the fo:list-item-label highlighted.

fo:list-item-body 48

<fo:list-item-body
 start-indent="body-start()"
 end-indent="{$ordered-list-separation}">
 <fo:block>
 <xsl:apply-templates/>
 </fo:block>
</fo:list-item-body>

The portion of the previous xsl:template that produces the fo:list-item-body.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

29

Formatted fo:list-item-body 49

start-indent

The screenshot with the areas generated by the fo:list-item-body highlighted.

body-start() and label-end() 50

• fo:list-item-label/@end-indent and fo:list-item-body/@start-indent could be any
value

• label-end() and body-start() inherit from nearest ancestor fo:list-block
• end-indent="label-end()" and start-indent="body-start()" are just “conveniences”
• Can set properties to any value

• E.g., start-indent="2 * body-start()"

label-end() and body-start() are provided so you can easily use the provisional-
label-separation and provisional-distance-between-starts properties from the
fo:list-item.

Antenna House, Inc.

30 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

How They Work 51

provisional-distance-between-starts
 = 20pt

provisional-label-separation
 = 5pt

body-start() = start-indent + start-intrusion-adjustment +
 provisional-distance-between-starts
 = 5pt + 0 + 20pt
 = 25pt

label-end() = width -
 (provisional-distance-between-starts +
 start-indent +
 start-intrusion-adjustment -
 provisional-label-separation)
 = 100% - (20pt + 5pt + 0 - 5pt)
 = 100% - 20pt

The formulas relating provisional-label-separation and provisional-distance-
between-starts to label-end() and body-start(). (The dimmed portions apply only
when the list item is intruded on by a float.)

Exercise 3 – Lists of Problems 52

• Some scripts use more than single numbers for list markers
• Chamula Tzotzil uses “Jun sloilal.”, “Chib sloilal.” and “Oxib sloilal.”
• How would you handle the changing size of the list markers in the one document?

The range of values used in list item labels in “UDHR in Unicode” requires something
more than just fixed label separation if the result is to look good for all languages. How
would you handle it?

Working Backwards 53

• When you can’t produce the right FO markup using XSLT...
• Edit sample FO until it’s right
• Then modify the XSLT to match it

You may reach a point where you’re not sure what FOs and properties to generate to
produce a correct result. If so, you may need to ‘work backwards’ by editing a sample
FO file until it produces the correct result and then modifying the XSLT to recreate the
FO markup.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

31

Checking Output 54

• Work with PDF
• Ruler in PDF reader
• Export as RTF (YMMV)
• Paste into word processor or Illustrator to check fonts and sizes (YMMV)

• Open in FO processor application
• xmlroff testing module
• Antenna House Regression Testing Framework (AHRTS)
• Validate with focheck
• Review page masters with fopages

Checking your output isn’t a separate phase, since you should be doing this all the way
through.
There are multiple ways to check your formatted output, as well as different aspects
that can be checked.
Working with the PDF or opening the PDF in some other application to check font
sizes, etc., is one option, but there are other alternatives.

xmlroff Testing Module 55

• Works with any command-line XSL processor
• Compares current results against reference
• Summary and individual HTML reports
• “Stereo” view of differences

Antenna House, Inc.

32 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Antenna House Regression Testing System 56

AHRTS is able to run on two PDFs or two directories of PDFs and produce a PDF report
of differences between the files.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

33

Validate with focheck 57

https://github.com/AntennaHouse/focheck

• Validate XSL-FO with Relax NG and Schematron
• oXygen plug-in or command-line

focheck, from Antenna House and available on GitHub, allows you to validate your
generated XSL FO, including XSL FO with Antenna House extensions. You can install it
as an oXygen plugin or you can use the Relax NG and Schematron as you would use
any schema.

Antenna House, Inc.

34 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

https://github.com/AntennaHouse/focheck

fopages 58

https://github.com/MenteaXML/fopages

• Report on page masters used in FO file
• Work in progress

focheck produces a report of the page masters and page sequences masters used in
an FO file.

Stylesheet Stage 4 59

• Asymmetric page design
• After Villard de Honnecourt, Paris, c. 1280

• Metadata in side region
• Lists item labels in margin
• 2248 pages for all translations

This is an example project without a specified design, so anything is possible if it
improves the output. This next iteration changes the page layout, moves the list item
labels into the margins, and puts some of the metadata for each translation in the side
regions.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

35

https://github.com/MenteaXML/fopages

Asymmetric Page Design in Scots 60

There are many classic, geometric page designs that are visually pleasing. Putting the
text block 1in in from every edge of the page may be simple, but it’s also very plain.

Antenna House, Inc.

36 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Villard de Honnecourt’s Page Design 61

• Geometrically divide page
• From when straight lines were more accurate/repeatable than using measurements

All of these lines simply divide the page height and width into ninths. The inner and
top margins are one-ninth, and the outer and bottom margins are two-ninths, of the
page width and height.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

37

Stuff In The Margins 62

• Language name, etc., from index.xml
• Could you tell every language without it?

To make the page more interesting, and because few people could tell every language/
script just by looking at them, some of the metadata from index.xml is placed on the
outer edge of each recto page.

Antenna House, Inc.

38 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Where Did We Get It? 63

• Metadata from index.xml
• You've seen this before
• Typical of metadata about some text

<udhrs
 ...
 <udhr
 l='sco' iso639-3='sco'
 uli='' bcp47=''
 ohchr='sco' stage='4'
 pdf='y' notes='n'
 loc='59,-2' country='GB'
 region='Europe' demo='n'
 n='Scots'/>
 ...
</udhrs>

The metadata on the outer edge is taken from the udhr element for the current
language.

How Does It Get On The Page? 64

<fo:static-content flow-name="First-Outside">
 <fo:block-container reference-orientation="270">
 <fo:table>
 <fo:table-body>
 <fo:table-cell
 width="{$body-before - $before-extent}in - 1em"/>
 <fo:table-cell color="white"
background-color="black" padding="3pt" padding-start="1em"
font-weight="bold" width="2in" display-align="center">
 <fo:block><xsl:value-of select="$name"/></fo:block>
 </fo:table-cell>
 <fo:table-cell width="0.5in"/>
 <fo:table-cell width="1in" padding="3pt">
 <fo:block><xsl:value-of select="$code"/></fo:block>
 <fo:block color="silver"
 font-size="small">code</fo:block>
 </fo:table-cell>
 ...
 </fo:table-body>
 </fo:table>
 </fo:block-container>
</fo:static-content>

The metadata appears in a table that is rotated so its top edge is along the outside
edge of the page. The table is inside an fo:static-content in the FO file, and the FO
processor uses the fo:static-content on pages that have a region named “First-
Outside”.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

39

Page Regions In XSL FO 65

region-before

region-body

region-after

region-
start

region-
end

The fo:simple-page-master FO in XSL 1.1 defines the dimensions of a page. A
document may have more than one fo:simple-page-master, and the same fo:simple-
page-master may be used in multiple contexts. An fo:simple-page-master has up to five
regions: fo:region-body, fo:region-start, fo:region-end, fo:region-start, and
fo:region-end. Only fo:region-body is required.

Antenna House, Inc.

40 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Effect of Writing Mode 66

region-before

region-body

region-after

region-
start

region-
end

region-before

region-body

region-after

region-
start

region-
end

Left to right Right to left

The FO names for the outer regions include “-before”, “-after”, “-start”, and “-end”
rather than “-top”, “-bottom”, “-left”, and “-right” since the relative position of the
regions depends on the writing mode.
This figure shows the arrangement of the regions for both “lr” (short for “tb-lr’ for “top-
to-bottom, right-to-left”) and “rl” (you can work it out) writing modes. As you can
imagine, the arrangements would be different again for “tb-rl” and “bt-rl”, etc.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

41

Regions Have Default Names 67

region-before

region-body

region-after

region-
start

region-
end

xsl-region-before

xsl-
region-

start

xsl-
region-

end

xsl-region-after

xsl-region-body

Regions have names, and content is directed to the page regions based on the region’s
name, not on its FO type (a.k.a. its “class”). This time, the figure shows the default, initial
name for each page region FO, which just happens to look a lot like the FO’s name,
such as “xsl-region-body” for fo:region-body.

Antenna House, Inc.

42 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Or Use Your Own Names 68

region-before

region-body

region-after

region-
start

region-
end

my-before

my-
start

my-
end

George

xsl-region-body

region-before

region-body

region-after

region-
start

region-
end

xsl-region-before

xsl-
region-

start

xsl-
region-

end

xsl-region-after

xsl-region-body

But you don’t have to stick with the initial names. You can define the regions with any
name, such as “my-before”, “my-end”, or even “George”, provided it’s:
• A valid name. It has to be, in XML terminology, a NCName, which means, e.g., it can’t

contain a colon and has to start with a letter (or other allowed character).
• Unique within the region names for the page master
• Not the initial name for a different class of region: i.e., you can’t call your fo:region-

before “xsl-region-after” and expect things to work
An additional proviso that works across page masters is that you can’t use the same
name on different region types on different page masters. So “George” can’t be a
fo:region-before on one page master and fo:region-start on another. Sorry, George.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

43

Reusing Region Names Across Page Masters 69

region-before

region-body

region-after

region-
start

region-
end

Odd-Header

xsl-
region-

start

First-
Outside

Odd-Footer

xsl-region-body

First

region-before

region-body

region-after

region-
start

region-
end

Odd-Header

xsl-
region-

start

Odd-
Outside

Odd-Footer

xsl-region-body

Odd

region-before

region-body

region-after

region-
start

region-
end

Even-Header

xsl-
region-

start

xsl-
region-

end

Even-Footer

xsl-region-body

Even

The flip-side of the proviso above is that you can use the same region name for the
same region on different page masters. This figure shows three page masters that will
separately be used for:
• The first page in a page sequence;
• The odd pages; and
• The even pages.
Since (for conventional, “tb-lr” documents, anyway) the first page of the first page
sequence is numbered “1” and appears on the right-hand (recto) side of a spread and
(conventionally, again) following page sequences also start on an odd-numbered, recto
page, the page master for the first pages often has the same header and/or footer as
other pages or other odd-numbered pages. In this case, the “First” page master and
the “Odd” page master have the same names for the same regions except xsl:region-
end, which is named “First-Outside” on the “First” page master and “Odd-Outside” on
the “Odd” page master. (Note that repetition of “First” and “Odd” in region names is for
convenience only and isn’t a requirement of XSL-FO.)

Antenna House, Inc.

44 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Arrange Page Masters Into Sequence 70

region-before

region-body

region-after

region-
start

region-
end

Odd-Header

xsl-
region-

start

First-
Outside

Odd-Footer

xsl-region-body

First

region-before

region-body

region-after

region-
start

region-
end

Odd-Header

xsl-
region-

start

Odd-
Outside

Odd-Footer

xsl-region-body

Odd

region-before

region-body

region-after

region-
start

region-
end

Even-Header

xsl-
region-

start

xsl-
region-

end

Even-Footer

xsl-region-body

Even

region-before

region-body

region-after

region-
start

region-
end

Even-Header

xsl-
region-

start

xsl-
region-

end

Even-Footer

xsl-region-body

Even

When the multiple page masters are used to make a sequence of pages (using
fo:page-sequence-master, as you do), you can see the repetition of the regions across
the multiple pages. When overlaid over pages from the example, you can see the same
footer in use on the odd pages, a different footer on the even pages, the different
fo:region-end content on the first and the later odd pages, and (in this case) nothing at
all in the fo:region-start of any page.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

45

Content From fo:page-sequence 71

region-before

region-body

region-after

region-
start

region-
end

Odd-Header

xsl-
region-

start

First-
Outside

Odd-Footer

xsl-region-body

First

region-before

region-body

region-after

region-
start

region-
end

Odd-Header

xsl-
region-

start

Odd-
Outside

Odd-Footer

xsl-region-body

Odd

region-before

region-body

region-after

region-
start

region-
end

Even-Header

xsl-
region-

start

xsl-
region-

end

Even-Footer

xsl-region-body

Even

region-before

region-body

region-after

region-
start

region-
end

Even-Header

xsl-
region-

start

xsl-
region-

end

Even-Footer

xsl-region-body

Even

<fo:static-content flow-name="Odd-Header">
 <fo:block>...</fo:block>
</fo:static-content>
<fo:static-content flow-name="Even-Footer">
 <fo:block><fo:page-number/></fo:block>
</fo:static-content>
<fo:static-content flow-name="Odd-Footer">
 <fo:block><fo:page-number/></fo:block>
</fo:static-content>
<fo:flow flow-name="xsl-region-body" id="sco">
...
</fo:flow>

<fo:static-content flow-name="Even-Header">
 <fo:block>UDHR in Unicode</fo:block>
</fo:static-content>
<fo:static-content flow-name="First-Outside">
 <fo:block-container reference-orientation="270">
 ...
 </fo:block-container>
</fo:static-content>
<fo:static-content flow-name="Odd-Outside">
 <fo:block-container reference-orientation="270">
 ...
 </fo:block-container>
</fo:static-content>

The content of the page regions, including the content of the fo:region-body, comes
from the fo:page-sequence: (conventionally) the content of the outer regions are
defined in fo:static-content, and the content of the fo:region-body, in the fo:flow. The
correspondence between fo:static-content and an outer region is by name: put
simply, when a page master for a page has a region with the same name as the “flow-
name” property of an fo:static-content of the current fo:page-sequence, the areas
from the formatting objects within the fo:static-content are repeated within that
region on that page. (The not put simply version could see things rearranged through a
XSL 1.1 fo:flow-map and multiple fo:flow with content directed to multiple regions on
the page, but that’s something for another time.)

Antenna House, Inc.

46 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Effect of reference-orientation 72

• Specifies direction of “top”, “bottom”, “left”, and “right”
• Applies to all FOs that generate reference areas
• Change is relative to current orientation

Scots

0

Scots

180 or
-180

Sc
ot

s

90 or
-270

Scots

270 or
-90

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

47

“Outer” Edge vs. rl Writing Mode 73

• “start” and “end” reversed between lr and rl writing modes
• No “outer” region in XSL FO
• Changing writing mode in fo:block-container

Since “start” and “end” change with the writing mode, it became necessary to set the
writing mode on the fo:region-body only.

Antenna House, Inc.

48 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Title Page and Copyright Notice 74

• Boilerplate
• Could add logo, etc.

Making Title and Copyright Pages 75

<fo:page-sequence master-reference="CoverFrontMaster"
 writing-mode="from-page-master-region()">
 <fo:flow flow-name="xsl-region-body">
 <fo:block space-after="72pt" space-after.precedence="1"
 font-size="4em" font-weight="bolder"
 text-align="center">UDHR in Unicode</fo:block>
 <fo:block-container height="100%" display-align="after">
 <fo:block>This is the full text of the Universal
Declaration of Human Rights (UDHR), in one or more
languages.</fo:block>
 <fo:block>© 1996-2007 The Office of the High
Commissioner for Human Rights.</fo:block>
 <fo:block>This PDF version prepared from XML from the
UDHR in Unicode project, <fo:basic-link
external-destination="http://www.unicode.org/udhr"
>http://www.unicode.org/udhr</fo:basic-link>.</fo:block>
 </fo:block-container>
 </fo:flow>
</fo:page-sequence>

The title page in generated from text that is hard-coded in the XSLT file.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

49

Tables of Contents 76

• Language name, sorted alphabetically
• Title, sorted in default collation

Two tables of contents are generated.

Making “Languages” Table Of Contents 77

<fo:page-sequence master-reference="PageMaster"
 initial-page-number="auto-odd">
 <xsl:call-template name="PageMaster-static-content"/>
 <fo:flow flow-name="xsl-region-body">
 <fo:block space-after="24pt" space-after.precedence="1">
 <xsl:call-template name="toc-title">
 <xsl:with-param name="title">Languages</xsl:with-param>
 </xsl:call-template>
 </fo:block>
 <xsl:apply-templates
 select="udhr[@stage!=2]
 [$lang eq '#all' or
 (tokenize($lang,
 ',\s*') =
 string-join((@l, @v),
 '_'))]"
 mode="toc">
 <xsl:sort select="@n"/>
 </xsl:apply-templates>
 </fo:flow>
</fo:page-sequence>

Antenna House, Inc.

50 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

“Languages” Table Of Contents Entry 78

<xsl:template name="toc-page-number">
 <xsl:param name="id" select="generate-id()"/>
 <xsl:text> </xsl:text>
 <fo:basic-link internal-destination="{$id}">
 <fo:page-number-citation ref-id="{$id}"
 xsl:use-attribute-sets="toc-number-attr"/>
 </fo:basic-link>
</xsl:template>

<xsl:template match="udhr" mode="toc" priority="2">
 <fo:block xsl:use-attribute-sets="toc-block-attr">
 <fo:inline xsl:use-attribute-sets="toc-attr">
 <xsl:value-of select="@n"/>
 </fo:inline>
 <xsl:call-template name="toc-page-number">
 <xsl:with-param
 name="id"
 select="string-join((@l, @v), '_')"
 as="xs:string" />
 </xsl:call-template>
 </fo:block>
</xsl:template>

Making “Titles” Tables Of Contents 79

<fo:flow flow-name="xsl-region-body">
 ...
 <fo:table>
 <fo:table-body>
 <xsl:apply-templates
 select="udhr[@stage!=2]
 [$lang eq '#all' or
 (tokenize($lang,
 ',\s*') =
 string-join((@l, @v),
 '_'))]"
 mode="toc2">
 <xsl:sort
 select="document(concat('udhr_',
 string-join((@l, @v),
 '_'),
 '.xml'))/
 udhr:udhr/udhr:title"/>
 </xsl:apply-templates>
 </fo:table-body>
 </fo:table>
</fo:flow>

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

51

“Titles” Table Of Contents Entry 80

<xsl:template match="udhr:udhr" mode="toc2">
 ...
 <fo:table-row>
 <fo:table-cell>
 <xsl:if test="$lr">
 <xsl:apply-templates select="udhr:title" mode="#current" />
 </xsl:if>
 </fo:table-cell>
 <fo:table-cell display-align="after">
 <fo:block text-align="center">
 <fo:basic-link internal-destination="{$id}">
 <fo:page-number-citation ref-id="{$id}"
 xsl:use-attribute-sets="toc-number-attr"/>
 </fo:basic-link>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <xsl:if test="not($lr)">
 <xsl:apply-templates select="udhr:title" mode="#current" />
 </xsl:if>
 </fo:table-cell>
 </fo:table-row>
</xsl:template>

When Are You Done? 81

• You may be done when:
• There's no unhandled elements
• There's no unhandled contexts
• The pages look good

The definition of “done” depends on the particular project.

Are There Unhandled Elements? 82

• Catch-all template that highlights unhandled elements
• Make sure it has lowest import precedence!

<xsl:template match="*" mode="#all">
 <fo:wrapper color="red">
 <xsl:apply-templates mode="#current"/>
 </fo:wrapper>
</xsl:template>

It is quite common to include a template in the XSLT transformation that makes
unhandled text appear red (or draws attention to itself in some other way) in the
formatted output.

Antenna House, Inc.

52 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

More Bells, More Whistles 83

<xsl:param name="debug" select="'no'"/>

<xsl:param name="no-rule" select="'article,preamble'"/>

<xsl:variable name="no-rule-strings"
 select="if ($no-rule ne '')
 then tokenize($no-rule, ', *')
 else ()"/>

<xsl:template
 match="*[$debug eq 'yes']
 [not(local-name() = $no-rule-strings)]"
 mode="#all" priority="-0.5">
 <xsl:message>
 <xsl:text>No rule for '</xsl:text>
 <xsl:value-of select="local-name()" />
 <xsl:text>'</xsl:text>
 </xsl:message>
 <fo:wrapper color="red">
 <xsl:apply-templates mode="#current"/>
 </fo:wrapper>
</xsl:template>

You can make this as fancy as you want.

Have You Handled All Contexts? 84

• Behaviour that depends on:
• Specific attribute values
• Combinations of multiple attributes
• Several levels of ancestry
• Space before or after depending on type of siblings

• Starting from a good specification will help!

You may find that new unhandled contexts are appearing even after you’ve delivered
the stylesheet.

Do The Pages Look Good? 85

You're on your own here.

Exercise 4 – Finishing Up 86

Add a template rule to find unimplemented elements.
Handle any problems that you find.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

53

Summary 87

• Discovery
• Finding what you're dealing with

• Mapping
• Working out what to do

• Implementation
• Doing it

References 88

• UDHR in Unicode – http://www.unicode.org/udhr/
• Wikipedia on UDHR – https://secure.wikimedia.org/wikipedia/en/wiki/

Universal_Declaration_of_Human_Rights

• UDHR record – http://www.guinnessworldrecords.com/records-1000/most-translated-
document/

Tools 89

• AH Formatter – http://www.antennahouse.com/antenna1/formatter/
• Antenna House Regression Testing System – http://www.antennahouse.com/antenna1/

antenna-house-regression-testing-system/

• BaseX – http://basex.org/
• focheck – https://github.com/AntennaHouse/focheck
• fopages – https://github.com/MenteaXML/fopages
• Saxon XQuery from the command line – http://www.saxonica.com/documentation/

index.html#!using-xquery/commandline

• Trang – http://www.thaiopensource.com/relaxng/trang.html

Antenna House, Inc.

54 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

http://www.unicode.org/udhr/
https://secure.wikimedia.org/wikipedia/en/wiki/Universal_Declaration_of_Human_Rights
https://secure.wikimedia.org/wikipedia/en/wiki/Universal_Declaration_of_Human_Rights
http://www.guinnessworldrecords.com/records-1000/most-translated-document/
http://www.guinnessworldrecords.com/records-1000/most-translated-document/
http://www.antennahouse.com/antenna1/formatter/
http://www.antennahouse.com/antenna1/antenna-house-regression-testing-system/
http://www.antennahouse.com/antenna1/antenna-house-regression-testing-system/
http://basex.org/
https://github.com/AntennaHouse/focheck
https://github.com/MenteaXML/fopages
http://www.saxonica.com/documentation/index.html#!using-xquery/commandline
http://www.saxonica.com/documentation/index.html#!using-xquery/commandline
http://www.thaiopensource.com/relaxng/trang.html

Appendix A
About
Tony Graham 55
Antenna House 55

Tony Graham
Tony Graham is a Senior Architect with Antenna House, where he works on their XSL-FO and
CSS formatter, cloud-based authoring solution, and related products. He also provides XSL-
FO and XSLT consulting and training services on behalf of Antenna House.
Tony has been working with markup since 1991, with XML since 1996, and with XSLT/XSL-FO
since 1998. He is Chair of the Print and Page Layout Community Group at the W3C and previ-
ously an invited expert on the W3C XML Print and Page Layout Working Group (XPPL) defin-
ing the XSL-FO specification, as well as an acknowledged expert in XSLT. Tony is the
developer of the ‘stf’ Schematron testing framework and also Antenna House’s ‘focheck’
XSL-FO validation tool, a committer to both the XSpec and Juxy XSLT testing frameworks,
the author of “Unicode: A Primer”, and a qualified trainer.
Tony’s career in XML and SGML spans Japan, USA, UK, and Ireland. Before joining Antenna
House, he had previously been an independent consultant, a Staff Engineer with Sun
Microsystems, a Senior Consultant with Mulberry Technologies, and a Document Analyst
with Uniscope. He has worked with data in English, Chinese, Japanese, and Korean, and with
academic, automotive, publishing, software, and telecommunications applications. He has
also spoken about XML, XSLT, XSL-FO, EPUB, and related technologies to clients and confer-
ences in North America, Europe, Japan, and Australia.

Antenna House
Antenna House is a global software company that works to make your documentation
development and processing easier every single day. We were founded in 1984 in Tokyo but
have spread our document formatting software throughout the world thanks to our growing
staff in Beijing, Delaware and Maryland.
With 30 years of experience, we can offer you the best professional typesetting software and
help you test all of these documents to ensure you’re sending the right document every
time.
The Antenna House Formatter is the most powerful XSL-FO software and CSS document
formatting software on the market. To meet your needs, we have expanded AH Formatter to
support more than 60 languages. This ensures that you’ll always have the best and the only
professional typesetting software you’ll ever need. Fill the gaps in your processes with AH
Formatter.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

55

Exercise 1
Generate Schema for UDHR XML Files
Use Trang to generate a schema for all the udhr_*.xml files.
• Before running Trang, look at one or two of the UDHR XML files to get an idea of their

structure.
• Run Trang on all the UDHR XML files to produce a schema in your preferred format

• The extension of the output file – .dtd, .xsd, .rng, or .rnc – will determine the schema
language

• Review the generated schema
• Did Trang find more than you did?
• Compare the generated schema with the offical schema in schema.rnc
• Which schema will be more useful when writing a stylesheet? Why?
• Will the attribute types in the generated schema help you to know waht you would have

to handle?
• Does it tell you enough?

Antenna House, Inc.

56 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Exercise 2
Longest udhr:listitem/@tag
Find the length of the longest udhr:listitem/@tag value.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

57

Exercise 3
Variable fo:list-item-label Width
• Some scripts use more than single numbers for list markers
• Chamula Tzotzil uses “Jun sloilal.”, “Chib sloilal.” and “Oxib sloilal.”
• How would you handle the changing size of the list markers in the one document?

Antenna House, Inc.

58 Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

Exercise 4
Finishing Up
Add a template rule to find unimplemented elements.
Run the languages eng, sco, and tzc
Handle any problems that you find.

XSLT and XSL FO Toolboxof Tips and Tricks

Licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 Unported License

59

	XSLT and XSL FO Tool­box of Tips and Tricks
	Extended Example: UDHR in Unicode
	Discovery
	Mapping
	Implementation
	Stylesheet Stage 1
	Stylesheet Stage 2
	Stylesheet Stage 3
	Working Backwards
	Stylesheet Stage 4
	Stuff In The Margins
	Page Regions In XSL FO

	Title Page and Copyright Notice
	Tables of Contents

	When Are You Done?
	Summary
	References

	A. About
	Tony Graham
	Antenna House

